ﻻ يوجد ملخص باللغة العربية
Time crystals are a phase of matter, for which the discrete time symmetry of the driving Hamiltonian is spontaneously broken. The breaking of discrete time symmetry has been observed in several experiments in driven spin systems. Here, we show the observation of a space-time crystal using ultra-cold atoms, where the periodic structure in both space and time are directly visible in the experimental images. The underlying physics in our superfluid can be described ab initio and allows for a clear identification of the mechanism that causes the spontaneous symmetry breaking. Our results pave the way for the usage of space-time crystals for the discovery of novel nonequilibrium phases of matter.
Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in classical mean-field phenomena. Here we report on the observation of stable quantum droplets containing $sim$ 800 atoms which are expected to collapse a
The formation of a phase of matter can be associated with the spontaneous breaking of a symmetry. For crystallization, this broken symmetry is the spatial translation symmetry, as the atoms spontaneously localize in a periodic fashion. In analogy to
We study the propagation of sound waves in a binary superfluid gas with two symmetric components. The binary superfluid is constituted using a Bose-Einstein condensate of $^{23}$Na in an equal mixture of two hyperfine ground states. Sound waves are e
We characterize the collective modes of a soliton train in a quasi-one-dimensional Fermi superfluid, using a mean-field formalism. In addition to the expected Goldstone and Higgs modes, we find novel long-lived gapped modes associated with oscillatio
We present the theory of spontaneous symmetry breaking (SSB) of discrete time translations as recently realized in the space-time crystals of an atomic Bose-Einstein condensate. The non-equilibrium physics related to such a driven-dissipative system