ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero sound in a two-dimensional dipolar Fermi gas

289   0   0.0 ( 0 )
 نشر من قبل Zhenkai Lu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean field and many-body (beyond mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles, although the zero sound peak in the structure function is very close to the particle-hole continuum.



قيم البحث

اقرأ أيضاً

We systematically develop a density functional description for the equilibrium properties of a two-dimensional, harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas-Fermi von Weizsacker approximation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where corrections beyond the local density approximation must be motivated with care. We also present an intuitive derivation of the interaction energy functional associated with the dipolar interactions, and provide physical insight into why it can be represented as a local functional. Finally, a simple, and highly efficient self-consistent numerical procedure is developed to determine the equilibrium density of the system for a range of dipole interaction strengths.
We have investigated spin dynamics in a 2D quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped d ensity distributions with superimposed angular density modulations. The density distributions depend on the applied magnetic field and are well explained by a simple Bogoliubov model. We show that the two clouds are anti-correlated in momentum space. The observed momentum correlations pave the way towards the creation of an atom source with non-local Einstein-Podolsky-Rosen entanglement.
We present vortex solutions for the homogeneous two-dimensional Bose-Einstein condensate featuring dipolar atomic interactions, mapped out as a function of the dipolar interaction strength (relative to the contact interactions) and polarization direc tion. Stable vortex solutions arise in the regimes where the fully homogeneous system is stable to the phonon or roton instabilities. Close to these instabilities, the vortex profile differs significantly from that of a vortex in a nondipolar quantum gas, developing, for example, density ripples and an anisotropic core. Meanwhile, the vortex itself generates a mesoscopic dipolar potential which, at distance, scales as 1/r^2 and has an angular dependence which mimics the microscopic dipolar interaction.
197 - K. Aikawa , S. Baier , A. Frisch 2014
The deformation of a Fermi surface is a fundamental phenomenon leading to a plethora of exotic quantum phases. Understanding these phases, which play crucial roles in a wealth of systems, is a major challenge in atomic and condensed-matter physics. H ere, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides basis for future studies on anisotropic many-body phenomena in normal and superfluid phases.
We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dip ole, changing the density profile and generating an effective dipolar potential centred at the vortex core whose most slowly decaying terms go as $1/rho^2$ and $ln(rho)/rho^3$. These effects modify the vortex-vortex interaction which, in particular, becomes anisotropic for dipoles polarized in the plane. Striking modifications to vortex-vortex dynamics are demonstrated, i.e. anisotropic co-rotation dynamics and the suppression of vortex annihilation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا