ﻻ يوجد ملخص باللغة العربية
In this paper we extend the nonabelian mirror proposal of two of the authors from two-dimensional gauge theories with connected gauge groups to the case of O(k) gauge groups with discrete theta angles. We check our proposed extension by counting and comparing vacua in mirrors to known dual two-dimensional (S)O(k) gauge theories. The mirrors in question are Landau-Ginzburg orbifolds, and for mirrors to O(k) gauge theories, the critical loci of the mirror superpotential often intersect fixed-point loci, so that to count vacua, one must take into account twisted sector contributions. This is a technical novelty relative to mirrors of gauge theories with connected gauge groups, for which critical loci do not intersect fixed-point loci and so no orbifold twisted sector contributions are pertinent. The vacuum computations turn out to be a rather intricate test of the proposed mirrors, in particular as untwisted sector states in the mirror to one theory are often exchanged with twisted sector states in the mirror to the dual. In cases with nontrivial IR limits, we also check that central charges computed from the Landau-Ginzburg mirrors match those expected for the IR SCFTs.
We propose Picard-Fuchs equations for periods of nonabelian mirrors in this paper. The number of parameters in our Picard-Fuchs equations is the rank of the gauge group of the nonabelian GLSM, which is eventually reduced to the actual number of K{a}h
The nonabelian global chiral symmetries of the two-dimensional N flavour massless Schwinger model are realised through bosonisation and a vertex operator construction.
We elaborate on how to build, in a systematic fashion, two-field Abelian extensions of the Born-Infeld Lagrangian. These models realize the non-trivial duality groups that are allowed in this case, namely U(2), SU(2) and U(1)xU(1). For each class, we
In this work, we study the behavior of the nonabelian five-dimensional Chern-Simons term at finite temperature regime in order to verify the possible nonanalyticity. We employ two methods, a perturbative and a non-perturbative one. No scheme of regul
We use the superspace formulation of supergravity in eleven and ten dimensions to compute fermion couplings on the M2-brane and on D$p$-branes. In this formulation fermionic couplings arise naturally from the $theta$-expansion of the superfields from