ﻻ يوجد ملخص باللغة العربية
In this work, we study the behavior of the nonabelian five-dimensional Chern-Simons term at finite temperature regime in order to verify the possible nonanalyticity. We employ two methods, a perturbative and a non-perturbative one. No scheme of regularization is needed, and we verify the nonanalyticity of the self-energy of the photon in the origin of momentum space by two conditions that do not commute, namely, the static limit $(k_0=0,vec krightarrow 0)$ and the long wavelength limit $(k_0rightarrow 0,vec k= 0)$, while its tensorial structure holds in both limits.
Based on recent discussions on the so-called unconventional supersymmetry, we propose a 5D Chern-Simons AdS-$mathcal{N}$-SUGRA formulation without gravitino fields and show that a residual local SUSY is preserved. We explore the properties of CS theo
We consider a five-dimensional Einstein-Chern-Simons action which is composed of a gravitational sector and a sector of matter, where the gravitational sector is given by a Chern-Simons gravity action instead of the Einstein-Hilbert action, and where
We propose a random matrix theory for QCD in three dimensions with a Chern-Simons term at level $k$ which spontaneously breaks the flavor symmetry according to U($2N_{rm f}$) $to $ U($N_{rm f}+k$)$times$U($N_{rm f}-k$). This random matrix model is ob
Using a variation of Lueschers geometric charge definition for SU(2) lattice gauge theory, we have managed to give a geometric expression for its Chern-Simons ter. From this definition we have checked the periodic structure. we determined the Chern-S
We extend our recent work on the quasilocal formulation of conserved charges to a theory of gravity containing a gravitational Chern-Simons term. As an application of our formulation, we compute the off-shell potential and quasilocal conserved charge