ترغب بنشر مسار تعليمي؟ اضغط هنا

Secrecy Analysis and Learning-based Optimization of Cooperative NOMA SWIPT Systems

79   0   0.0 ( 0 )
 نشر من قبل Furqan Jameel
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-orthogonal multiple access (NOMA) is considered to be one of the best candidates for future networks due to its ability to serve multiple users using the same resource block. Although early studies have focused on transmission reliability and energy efficiency, recent works are considering cooperation among the nodes. The cooperative NOMA techniques allow the user with a better channel (near user) to act as a relay between the source and the user experiencing poor channel (far user). This paper considers the link security aspect of energy harvesting cooperative NOMA users. In particular, the near user applies the decode-and-forward (DF) protocol for relaying the message of the source node to the far user in the presence of an eavesdropper. Moreover, we consider that all the devices use power-splitting architecture for energy harvesting and information decoding. We derive the analytical expression of intercept probability. Next, we employ deep learning based optimization to find the optimal power allocation factor. The results show the robustness and superiority of deep learning optimization over conventional iterative search algorithm.



قيم البحث

اقرأ أيضاً

This letter proposes a dynamic power splitting scheme (DPSS) for decode-and-forward (DF) based cooperative simultaneous wireless information and power transfer (SWIPT) networks with direct link. The relay node adopts an optimal dynamic power splittin g factor determined by instantaneous channel state information (CSI) to harvest energy and process information. The expressions for the optimal dynamic power splitting factor, outage probability and ergodic capacity of the proposed network are derived. Numerical results show that the proposed scheme is better than or the same as the existing PS schemes in terms of outage probability, while it achieves higher ergodic capacity compared to the existing PS schemes.
Aerial relays have been regarded as an alternative and promising solution to extend and improve satellite-terrestrial communications, as the probability of line-of-sight transmissions increases compared with adopting terrestrial relays. In this paper , a cooperative satellite-aerial-terrestrial system including a satellite transmitter (S), a group of terrestrial receivers (D), and an aerial relay (R) is considered. Specifically, considering the randomness of S and D and employing stochastic geometry, the coverage probability of R-D links in non-interference and interference scenarios is studied, and the outage performance of S-R link is investigated by deriving an approximated expression for the outage probability. Moreover, an optimization problem in terms of the transmit power and the transmission time over S-R and R-D links is formulated and solved to obtain the optimal end-to-end energy efficiency for the considered system. Finally, some numerical results are provided to validate our proposed analysis models, as well as to study the optimal energy efficiency performance of the considered system.
This paper investigates the application of deep deterministic policy gradient (DDPG) to intelligent reflecting surface (IRS) based unmanned aerial vehicles (UAV) assisted non-orthogonal multiple access (NOMA) downlink networks. The deployment of the UAV equipped with an IRS is important, as the UAV increases the flexibility of the IRS significantly, especially for the case of users who have no line of sight (LoS) path to the base station (BS). Therefore, the aim of this letter is to maximize the sum rate by jointly optimizing the power allocation of the BS, the phase shifting of the IRS and the horizontal position of the UAV. Because the formulated problem is not convex, the DDPG algorithm is utilized to solve it. The computer simulation results are provided to show the superior performance of the proposed DDPG based algorithm.
In this paper, we propose a novel joint resource allocation and cooperative caching scheme for power-domain non-orthogonal multiple access (PD-NOMA)-based heterogeneous networks (HetNets). In our scheme, the requested content is fetched directly from the edge if it is cached in the storage of one of the base stations (BSs), and otherwise is fetched via the backhaul. Our scheme consists of two phases: 1. Caching phase where the contents are saved in the storage of the BSs, and 2. Delivery phase where the requested contents are delivered to users. We formulate a novel optimization problem over radio resources and content placement variables. We aim to minimize the network cost subject to quality-of-service (QoS), caching, subcarrier assignment, and power allocation constraints. By exploiting advanced optimization methods, such as alternative search method (ASM), Hungarian algorithm, successive convex approximation (SCA), we obtain an efficient sub-optimal solution of the optimization problem. Numerical results illustrate that our ergodic caching policy via the proposed resource management algorithm can achieve a considerable reduction on the total cost on average compared to the most popular caching and random caching policy. Moreover, our cooperative NOMA scheme outperforms orthogonal multiple access (OMA) in terms of the delivery cost in general with an acceptable complexity increase.
We investigate the reliability and security of the ambient backscatter (AmBC) non-orthogonal multiple access (NOMA) systems, where the source aims to communication with two NOMA users in the presence of an eavesdropper. We consider a more practical c ase that nodes and backscatter device (BD) suffer from in-phase and quadrature-phase imbalance (IQI). More specifically, exact analytical expressions for the outage probability (OP) and the intercept probability (IP) are derived in closedform. Moreover, the asymptotic behaviors and corresponding diversity orders for the OP are discussed. Numerical results show that: 1) Although IQI reduces the reliability, it can enhance the security. 2) Compared with the traditional orthogonal multiple access (OMA) system, the AmBC-NOMA system can obtain better reliability when the signal-to-noise (SNR) ratio is low; 3) There are error floors for the OP because of the reflection coefficient b{eta} .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا