ﻻ يوجد ملخص باللغة العربية
We investigate the reliability and security of the ambient backscatter (AmBC) non-orthogonal multiple access (NOMA) systems, where the source aims to communication with two NOMA users in the presence of an eavesdropper. We consider a more practical case that nodes and backscatter device (BD) suffer from in-phase and quadrature-phase imbalance (IQI). More specifically, exact analytical expressions for the outage probability (OP) and the intercept probability (IP) are derived in closedform. Moreover, the asymptotic behaviors and corresponding diversity orders for the OP are discussed. Numerical results show that: 1) Although IQI reduces the reliability, it can enhance the security. 2) Compared with the traditional orthogonal multiple access (OMA) system, the AmBC-NOMA system can obtain better reliability when the signal-to-noise (SNR) ratio is low; 3) There are error floors for the OP because of the reflection coefficient b{eta} .
One of the key challenges of the Internet of Things (IoT) is to sustainably power the large number of IoT devices in real-time. In this paper, we consider a wireless power transfer (WPT) scenario between an energy transmitter (ET) capable of retrodir
We consider an ambient backscatter communication (AmBC) system aided by an intelligent reflecting surface (IRS). The optimization of the IRS to assist AmBC is extremely difficult when there is no prior channel knowledge, for which no design solutions
In this paper, a backscatter cooperation (BC) scheme is proposed for non-orthogonal multiple access (NOMA) downlink transmission. The key idea is to enable one user to split and then backscatter part of its received signals to improve the reception a
Non-orthogonal multiple access (NOMA) and massive multiple-input multiple-output (MIMO) systems are highly efficient. Massive MIMO systems are inherently resistant to passive attackers (eavesdroppers), thanks to transmissions directed to the desired
The key idea of non-orthogonal multiple access (NOMA) is to serve multiple users simultaneously at the same time and frequency, which can result in excessive multiple-access interference. As a crucial component of NOMA systems, successive interferenc