ترغب بنشر مسار تعليمي؟ اضغط هنا

Noncommutative Schur-type products and their Schoenberg theorem

377   0   0.0 ( 0 )
 نشر من قبل J E Pascoe
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف J. E. Pascoe




اسأل ChatGPT حول البحث

Schoenberg showed that a function $f:(-1,1)rightarrow mathbb{R}$ such that $C=[c_{ij}]_{i,j}$ positive semi-definite implies that $f(C)=[f(c_{ij})]_{i,j}$ is also positive semi-definite must be analytic and have Taylor series coefficients nonnegative at the origin. The Schoenberg theorem is essentially a theorem about the functional calculus arising from the Schur product, the entrywise product of matrices. Two important properties of the Schur product are that the product of two rank one matrices is rank one, and the product of two positive semi-definite matrices is positive semi-definite. We classify all products which satisfy these two properties and show that these generalized Schur products satisfy a Schoenberg type theorem.



قيم البحث

اقرأ أيضاً

In this paper we begin the study of Schur analysis and de Branges-Rovnyak spaces in the framework of Fueter hyperholomorphic functions. The difference with other approaches is that we consider the class of functions spanned by Appell-like polynomials . This approach is very efficient from various points of view, for example in operator theory, and allows to make connections with the recently developed theory of slice polyanalytic functions. We tackle a number of problems: we describe a Hardy space, Schur multipliers and related results. We also discuss Blaschke functions, Herglotz multipliers and their associated kernels and Hilbert spaces. Finally, we consider the counterpart of the half-space case, and the corresponding Hardy space, Schur multipliers and Caratheodory multipliers.
64 - J. E. Pascoe 2020
We show that the monodromy theorem holds on arbitrary connected free sets for noncommutative free analytic functions. Applications are numerous-- pluriharmonic free functions have globally defined pluriharmonic conjugates, locally invertible function s are globally invertible, and there is no nontrivial cohomology theory arising from analytic continuation on connected free sets. We describe why the Baker-Campbell-Hausdorff formula has finite radius of convergence in terms of monodromy, and solve a related problem of Martin-Shamovich. We generalize the Dym-Helton-Klep-McCullough-Volcic theorem-- a uniformly real analytic free noncommutative function is plurisubharmonic if and only if it can be written as a composition of a convex function with an analytic function. The decomposition is essentially unique. The result is first established locally, and then Free Universal Monodromy implies the global result. Moreover, we see that plurisubharmonicity is a geometric property-- a real analytic free function plurisubharmonic on a neighborhood is plurisubharmonic on the whole domain. We give an analytic Greene-Liouville theorem, an entire free plurisubharmonic function is a sum of hereditary and antihereditary squares.
71 - Greg Knese 2019
A short and simple proof of necessity in the McCullough-Quiggin characterization of positive semi-definite kernels with the complete Pick property is presented.
86 - Yongjiang Duan , Siyu Wang , 2021
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration o perators [ J_{g}(f)(z)=int_{0}^{z}f(lambda)g(lambda)dlambda ] between weighted Bergman spaces $L_{a}^{p}(omega )$ induced by $mathcal{D}$ weights and Hardy spaces $H^{q}$ for $0<p,q<infty$.
135 - Daniel Jupiter 2005
In this article we examine Dirichlet type spaces in the unit polydisc, and multipliers between these spaces. These results extend the corresponding work of G. D. Taylor in the unit disc. In addition, we consider functions on the polydisc whose rest rictions to lower dimensional polydiscs lie in the corresponding Dirichet type spaces. We see that such functions need not be in the Dirichlet type space of the whole polydisc. Similar observations are made regarding multipliers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا