ﻻ يوجد ملخص باللغة العربية
We show that the monodromy theorem holds on arbitrary connected free sets for noncommutative free analytic functions. Applications are numerous-- pluriharmonic free functions have globally defined pluriharmonic conjugates, locally invertible functions are globally invertible, and there is no nontrivial cohomology theory arising from analytic continuation on connected free sets. We describe why the Baker-Campbell-Hausdorff formula has finite radius of convergence in terms of monodromy, and solve a related problem of Martin-Shamovich. We generalize the Dym-Helton-Klep-McCullough-Volcic theorem-- a uniformly real analytic free noncommutative function is plurisubharmonic if and only if it can be written as a composition of a convex function with an analytic function. The decomposition is essentially unique. The result is first established locally, and then Free Universal Monodromy implies the global result. Moreover, we see that plurisubharmonicity is a geometric property-- a real analytic free function plurisubharmonic on a neighborhood is plurisubharmonic on the whole domain. We give an analytic Greene-Liouville theorem, an entire free plurisubharmonic function is a sum of hereditary and antihereditary squares.
Schoenberg showed that a function $f:(-1,1)rightarrow mathbb{R}$ such that $C=[c_{ij}]_{i,j}$ positive semi-definite implies that $f(C)=[f(c_{ij})]_{i,j}$ is also positive semi-definite must be analytic and have Taylor series coefficients nonnegative
In this paper we begin the study of Schur analysis and de Branges-Rovnyak spaces in the framework of Fueter hyperholomorphic functions. The difference with other approaches is that we consider the class of functions spanned by Appell-like polynomials
We discuss the history of the monodromy theorem, starting from Weierstrass, and the concept of monodromy group. From this viewpoint we compare then the Weierstrass , the Legendre and other normal forms for elliptic curves, explaining their geometric
We define the principal divisor of a free noncommuatative function. We use these divisors to compare the determinantal singularity sets of free noncommutative functions. We show that the divisor of a noncommutative rational function is the difference
Using a bigraded differential complex depending on the CR and pseudohermitian structure, we give a characterization of three-dimensional strongly pseudoconvex pseudo-hermitian CR-manifolds isometrically immersed in Euclidean space $mathbb{R}^n$ in te