ترغب بنشر مسار تعليمي؟ اضغط هنا

A hybrid Hermite WENO scheme for hyperbolic conservation laws

183   0   0.0 ( 0 )
 نشر من قبل Jianxian Qiu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a hybrid finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for solving one and two dimensional hyperbolic conservation laws. The zeroth-order and the first-order moments are used in the spatial reconstruction, with total variation diminishing Runge-Kutta time discretization. The main idea of the hybrid HWENO scheme is that we first use a shock-detection technique to identify the troubled cell, then, if the cell is identified as a troubled cell, we would modify the first order moment in the troubled cell and employ HWENO reconstruction in spatial discretization; otherwise, we directly use high order linear reconstruction. Unlike other HWENO schemes, we borrow the thought of limiter for discontinuous Galerkin (DG) method to control the spurious oscillations, after this procedure, the scheme would avoid the oscillations by using HWENO reconstruction nearby discontinuities and have higher efficiency for using linear approximation straightforwardly in the smooth regions. In addition, the hybrid HWENO scheme still keeps the compactness. A collection of benchmark numerical tests for one and two dimensional cases are performed to demonstrate the numerical accuracy, high resolution and robustness of the proposed scheme.



قيم البحث

اقرأ أيضاً

162 - Zhuang Zhao , Jianxian Qiu 2020
In this paper, a fifth-order Hermite weighted essentially non-oscillatory (HWENO) scheme with artificial linear weights is proposed for one and two dimensional hyperbolic conservation laws, where the zeroth-order and the first-order moments are used in the spatial reconstruction. We construct the HWENO methodology using a nonlinear convex combination of a high degree polynomial with several low degree polynomials, and the associated linear weights can be any artificial positive numbers with only requirement that their summation equals one. The one advantage of the HWENO scheme is its simplicity and easy extension to multi-dimension in engineering applications for we can use any artificial linear weights which are independent on geometry of mesh. The another advantage is its higher order numerical accuracy using less candidate stencils for two dimensional problems. In addition, the HWENO scheme still keeps the compactness as only immediate neighbor information is needed in the reconstruction and has high efficiency for directly using linear approximation in the smooth regions. In order to avoid nonphysical oscillations nearby strong shocks or contact discontinuities, we adopt the thought of limiter for discontinuous Galerkin method to control the spurious oscillations. Some benchmark numerical tests are performed to demonstrate the capability of the proposed scheme.
The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin method with a {delta}-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasti city in heterogeneous media and multi-class traffic flow with inhomogeneous road conditions. Numerical examples indicate the schemes efficiency in resolving complex waves of the two systems. Moreover, the discussion implies that the so-called {delta}-mapping algorithm can also be combined with any other classical methods for solving similar problems in general.
We consider entropy solutions to the initial value problem associated with scalar nonlinear hyperbolic conservation laws posed on the two-dimensional sphere. We propose a finite volume scheme which relies on a web-like mesh made of segments of longit ude and latitude lines. The structure of the mesh allows for a discrete version of a natural geometric compatibility condition, which arose earlier in the well-posedness theory established by Ben-Artzi and LeFloch. We study here several classes of flux vectors which define the conservation law under consideration. They are based on prescribing a suitable vector field in the Euclidean three-dimensional space and then suitably projecting it on the spheres tangent plane; even when the flux vector in the ambient space is constant, the corresponding flux vector is a non-trivial vector field on the sphere. In particular, we construct here equatorial periodic solutions, analogous to one-dimensional periodic solutions to one-dimensional conservation laws, as well as a wide variety of stationary (steady state) solutions. We also construct confined solutions, which are time-dependent solutions supported in an arbitrarily specified subdomain of the sphere. Finally, representative numerical examples and test-cases are presented.
In this paper, we propose a novel Hermite weighted essentially non-oscillatory (HWENO) fast sweeping method to solve the static Hamilton-Jacobi equations efficiently. During the HWENO reconstruction procedure, the proposed method is built upon a new finite difference fifth order HWENO scheme involving one big stencil and two small stencils. However, one major novelty and difference from the traditional HWENO framework lies in the fact that, we do not need to introduce and solve any additional equations to update the derivatives of the unknown function $phi$. Instead, we use the current $phi$ and the old spatial derivative of $phi$ to update them. The traditional HWENO fast sweeping method is also introduced in this paper for comparison, where additional equations governing the spatial derivatives of $phi$ are introduced. The novel HWENO fast sweeping methods are shown to yield great savings in both computational time and storage, which improves the computational efficiency of the traditional HWENO scheme. In addition, a hybrid strategy is also introduced to further reduce computational costs. Extensive numerical experiments are provided to validate the accuracy and efficiency of the proposed approaches.
116 - Dongmi Luo , Weizhang Huang , 2018
A moving mesh discontinuous Galerkin method is presented for the numerical solution of hyperbolic conservation laws. The method is a combination of the discontinuous Galerkin method and the mesh movement strategy which is based on the moving mesh par tial differential equation approach and moves the mesh continuously in time and orderly in space. It discretizes hyperbolic conservation laws on moving meshes in the quasi-Lagrangian fashion with which the mesh movement is treated continuously and no interpolation is needed for physical variables from the old mesh to the new one. Two convection terms are induced by the mesh movement and their discretization is incorporated naturally in the DG formulation. Numerical results for a selection of one- and two-dimensional scalar and system conservation laws are presented. It is shown that the moving mesh DG method achieves the theoretically predicted order of convergence for problems with smooth solutions and is able to capture shocks and concentrate mesh points in non-smooth regions. Its advantage over uniform meshes and its insensitiveness to mesh smoothness are also demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا