ﻻ يوجد ملخص باللغة العربية
In this work, we investigate Newtonian cosmologies with a time-varying gravitational constant, $G(t)$. We examine whether such models can reproduce the low-redshift cosmological observations without a cosmological constant, or any other sort of explicit dark energy fluid. Starting with a modified Newtons second law, where $G$ is taken as a function of time, we derive the first Friedmann--Lema{^i}tre equation, where a second parameter, $G^*$, appears as the gravitational constant. This parameter is related to the original $G$ from the second law, which remains in the acceleration equation. We use this approach to reproduce various cosmological scenarios that are studied in the literature, and we test these models with low-redshift probes: type-Ia supernovae (SNIa), baryon acoustic oscillations, and cosmic chronometers, taking also into account a possible change in the supernovae intrinsic luminosity with redshift. As a result, we obtain several models with similar $chi^2$ values as the standard $Lambda$CDM cosmology. When we allow for a redshift-dependence of the SNIa intrinsic luminosity, a model with a $G$ exponentially decreasing to zero while remaining positive (model 4) can explain the observations without acceleration. When we assume no redshift-dependence of SNIa, the observations favour a negative $G$ at large scales, while $G^*$ remains positive for most of these models. We conclude that these models offer interesting interpretations to the low-redshift cosmological observations, without needing a dark energy term.
The matter sound horizon can be inferred from the cosmic microwave background within the Standard Model. Independent direct measurements of the sound horizon are then a probe of possible deviations from the Standard Model. We aim at measuring the sou
Variation of the speed of light is quite a debated issue in cosmology with some benefits, but also with some controversial concerns. Many approaches to develop a consistent varying speed of light (VSL) theory have been developed recently. Although a
Webb et al. presented preliminary evidence for a time-varying fine-structure constant. We show Tellers formula for this variation to be ruled out within the Einstein-de Sitter universe, however, it is compatible with cosmologies which require a large cosmological constant.
We present a new measurement of the Newtonian gravitational constant G based on cold atom interferometry. Freely falling samples of laser-cooled rubidium atoms are used in a gravity gradiometer to probe the field generated by nearby source masses. In
The Gaussian process bandit is a problem in which we want to find a maximizer of a black-box function with the minimum number of function evaluations. If the black-box function varies with time, then time-varying Bayesian optimization is a promising