ﻻ يوجد ملخص باللغة العربية
The matter sound horizon can be inferred from the cosmic microwave background within the Standard Model. Independent direct measurements of the sound horizon are then a probe of possible deviations from the Standard Model. We aim at measuring the sound horizon $r_s$ from low-redshift indicators, which are completely independent of CMB inference. We used the measured product $H(z)r_s$ from baryon acoustic oscillations (BAO) together with supernovae~textsc{I}a to constrain $H(z)/H_{0}$ and time-delay lenses analysed by the H0LiCOW collaboration to anchor cosmological distances ($propto H_{0}^{-1}$). {Additionally, we investigated the influence of adding a sample of quasars with higher redshift with standardisable UV-Xray luminosity distances. We adopted polynomial expansions in $H(z)$ or in comoving distances} so that our inference was completely independent of any cosmological model on which the expansion history might be based. Our measurements are independent of Cepheids and systematics from peculiar motions {to within percent-level accuracy.} The inferred sound horizon $r_s$ varies between $(133 pm 8)$~Mpc and $(138 pm 5)$~Mpc across different models. The discrepancy with CMB measurements is robust against model choice. Statistical uncertainties are comparable to systematics. The combination of time-delay lenses, supernovae, and BAO yields a distance ladder that is independent of cosmology (and of Cepheid calibration) and a measurement of $r_s $ that is independent of the CMB. These cosmographic measurements are then a competitive test of the Standard Model, regardless of the hypotheses on which the cosmology is based.
Obtaining lensing time delay measurements requires long-term monitoring campaigns with a high enough resolution (< 1 arcsec) to separate the multiple images. In the radio, a limited number of high-resolution interferometer arrays make these observati
The Hubble constant value is currently known to 10% accuracy unless assumptions are made for the cosmology (Sandage et al. 2006). Gravitational lens systems provide another probe of the Hubble constant using time delay measurements. However, current
Strong lensing gravitational time delays are a powerful and cost effective probe of dark energy. Recent studies have shown that a single lens can provide a distance measurement with 6-7 % accuracy (including random and systematic uncertainties), prov
In this work, we investigate Newtonian cosmologies with a time-varying gravitational constant, $G(t)$. We examine whether such models can reproduce the low-redshift cosmological observations without a cosmological constant, or any other sort of expli
We simulate the effects of gravitational lensing on the source count of high redshift galaxies as projected to be observed by the Hubble Frontier Fields program and the James Webb Space Telescope (JWST) in the near future. Taking the mass density pro