ﻻ يوجد ملخص باللغة العربية
The Gaussian process bandit is a problem in which we want to find a maximizer of a black-box function with the minimum number of function evaluations. If the black-box function varies with time, then time-varying Bayesian optimization is a promising framework. However, a drawback with current methods is in the assumption that the evaluation time for every observation is constant, which can be unrealistic for many practical applications, e.g., recommender systems and environmental monitoring. As a result, the performance of current methods can be degraded when this assumption is violated. To cope with this problem, we propose a novel time-varying Bayesian optimization algorithm that can effectively handle the non-constant evaluation time. Furthermore, we theoretically establish a regret bound of our algorithm. Our bound elucidates that a pattern of the evaluation time sequence can hugely affect the difficulty of the problem. We also provide experimental results to validate the practical effectiveness of the proposed method.
Prognostic models in survival analysis are aimed at understanding the relationship between patients covariates and the distribution of survival time. Traditionally, semi-parametric models, such as the Cox model, have been assumed. These often rely on
Many applications require a learner to make sequential decisions given uncertainty regarding both the systems payoff function and safety constraints. In safety-critical systems, it is paramount that the learners actions do not violate the safety cons
Webb et al. presented preliminary evidence for a time-varying fine-structure constant. We show Tellers formula for this variation to be ruled out within the Einstein-de Sitter universe, however, it is compatible with cosmologies which require a large cosmological constant.
We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA)
We propose a new framework for imposing monotonicity constraints in a Bayesian nonparametric setting based on numerical solutions of stochastic differential equations. We derive a nonparametric model of monotonic functions that allows for interpretab