ﻻ يوجد ملخص باللغة العربية
A rotated odometer is an infinite interval exchange transformation (IET) obtained as a composition of the von Neumann-Kakutani map and a finite IET of intervals of equal length. In this paper, we consider rotated odometers for which the finite IET is of intervals of length $2^{-N}$, for some $N geq 1$. We show that every such system is measurably isomorphic to a $mathbb{Z}$-action on a rooted tree, and that the unique minimal aperiodic subsystem of this action is always measurably isomorphic to the action of the adding machine. We discuss the applications of this work to the study of group actions on binary trees.
We describe the infinite interval exchange transformations obtained as a composition of a finite interval exchange transformation and the von Neumann-Kakutani map, called the rotated odometers. We show that with respect to Lebesgue measure on the uni
Neuronal morphology is an essential element for brain activity and function. We take advantage of current availability of brain-wide neuron digital reconstructions of the Pyramidal cells from a mouse brain, and analyze several emergent features of br
We find a formula to compute the number of the generators, which generate the $n$-filtered space of Hopf algebra of rooted trees, i.e. the number of equivalent classes of rooted trees with weight $n$. Applying Hopf algebra of rooted trees, we show th
We introduce some natural families of distributions on rooted binary ranked plane trees with a view toward unifying ideas from various fields, including macroevolution, epidemiology, computational group theory, search algorithms and other fields. In
We address questions of logic and expressibility in the context of random rooted trees. Infiniteness of a rooted tree is not expressible as a first order sentence, but is expressible as an existential monadic second order sentence (EMSO). On the othe