ﻻ يوجد ملخص باللغة العربية
The symmetry of local moments plays a defining role in the nature of exotic grounds states stabilized in frustrated magnetic materials. We present inelastic neutron scattering (INS) measurements of the crystal electric field (CEF) excitations in the family of compounds MgRE$_2$Se$_4$ (RE $in$ ${$Ho, Tm, Er and Yb$}$). These compounds form in the spinel structure, with the rare earth ions comprising a highly frustrated pyrochlore sublattice. Within the symmetry constraints of this lattice, we fit both the energies and intensities of observed modes in the INS spectra to determine the most likely CEF Hamiltonian for each material and comment on the ground state wavefunctions in the local electron picture. In this way, we experimentally confirm MgTm$_2$Se$_4$ has a non-magnetic ground state, and MgYb$_2$Se$_4$ has effective $S=frac{1}{2}$ spins with $g_parallel = 5.188(79)$ and $g_perp = 0.923(85)~mu_B$. The spectrum of MgHo$_2$Se$_4$ indicates a ground state doublet containing Ising spins with $g_parallel = 2.72(46)$, though low-lying CEF levels are also seen at thermally accessible energies $delta_E = 0.591(36)$, 0.945(30) and 2.88(7)~meV, which can complicate interpretation. These results are used to comment on measured magnetization data of all compounds, and are compared to published results on the material MgEr$_2$Se$_4$.
Neutron scattering experiments have been performed on the ternary rare-earth diborocarbide Ce$^{11}$B$_2$C$_2$. The powder diffraction experiment confirms formation of a long-range magnetic order at $T_{rm N} = 7.3$ K, where a sinusoidally modulated
We report specific heat and thermal conductivity of gadolinium- and yttrium-doped amorphous silicon thin films measured using silicon-nitride membrane-based microcalorimeters. Addition of gadolinium or yttrium to the amorphous silicon network reduces
An indispensable step to understand collective magnetic phenomena in rare-earth compounds is the determination of spatially-anisotropic single-ion properties resulting from spin-orbit coupling and crystal field (CF). The CF Hamiltonian has a discrete
By the single crystal inelastic neutron scattering the orthoferrite HoFeO3 was studied. We show that the spin dynamics of the Fe subsystem does not change through the spin-reorientation transitions. The observed spectrum of magnetic excitations was a
In this work, we study the crystalline nuclei growth in glassy systems focusing primarily on the early stages of the process, at which the size of a growing nucleus is still comparable with the critical size. On the basis of molecular dynamics simula