ﻻ يوجد ملخص باللغة العربية
The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin method with a {delta}-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasticity in heterogeneous media and multi-class traffic flow with inhomogeneous road conditions. Numerical examples indicate the schemes efficiency in resolving complex waves of the two systems. Moreover, the discussion implies that the so-called {delta}-mapping algorithm can also be combined with any other classical methods for solving similar problems in general.
A moving mesh discontinuous Galerkin method is presented for the numerical solution of hyperbolic conservation laws. The method is a combination of the discontinuous Galerkin method and the mesh movement strategy which is based on the moving mesh par
Motivated by considering partial differential equations arising from conservation laws posed on evolving surfaces, a new numerical method for an advection problem is developed and simple numerical tests are performed. The method is based on an unfitt
In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the rela
We present unconditionally energy stable Runge-Kutta (RK) discontinuous Galerkin (DG) schemes for solving a class of fourth order gradient flows. Our algorithm is geared toward arbitrarily high order approximations in both space and time, while energ
We present a novel implementation of the modal discontinuous Galerkin (DG) method for hyperbolic conservation laws in two dimensions on graphics processing units (GPUs) using NVIDIAs Compute Unified Device Architecture (CUDA). Both flexible and highl