ﻻ يوجد ملخص باللغة العربية
A moving mesh discontinuous Galerkin method is presented for the numerical solution of hyperbolic conservation laws. The method is a combination of the discontinuous Galerkin method and the mesh movement strategy which is based on the moving mesh partial differential equation approach and moves the mesh continuously in time and orderly in space. It discretizes hyperbolic conservation laws on moving meshes in the quasi-Lagrangian fashion with which the mesh movement is treated continuously and no interpolation is needed for physical variables from the old mesh to the new one. Two convection terms are induced by the mesh movement and their discretization is incorporated naturally in the DG formulation. Numerical results for a selection of one- and two-dimensional scalar and system conservation laws are presented. It is shown that the moving mesh DG method achieves the theoretically predicted order of convergence for problems with smooth solutions and is able to capture shocks and concentrate mesh points in non-smooth regions. Its advantage over uniform meshes and its insensitiveness to mesh smoothness are also demonstrated.
The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin method with a {delta}-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasti
In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the rela
The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, space and angu
Motivated by considering partial differential equations arising from conservation laws posed on evolving surfaces, a new numerical method for an advection problem is developed and simple numerical tests are performed. The method is based on an unfitt
We present a novel implementation of the modal discontinuous Galerkin (DG) method for hyperbolic conservation laws in two dimensions on graphics processing units (GPUs) using NVIDIAs Compute Unified Device Architecture (CUDA). Both flexible and highl