ﻻ يوجد ملخص باللغة العربية
We consider critical points of a class of functionals on compact four-dimensional manifolds arising from Regularized Determinants for conformally covariant operators, whose explicit form was derived in [10], extending Polyakovs formula. These correspond to solutions of elliptic equations of Liouville type that are quasilinear, of mixed orders and of critical type. After studying existence, asymptotic behaviour and uniqueness of fundamental solutions, we prove a quantization property under blow-up, and then derive existence results via critical point theory.
We consider the case with boundary of the classical Kazdan-Warner problem in dimension greater or equal than three, i.e. the prescription of scalar and boundary mean curvatures via conformal deformations of the metric. We deal in particular with nega
We consider variational integrals of the form $int F(D^2u)$ where $F$ is convex and smooth on the Hessian space. We show that a critical point $uin W^{2,infty}$ of such a functional under compactly supported variations is smooth if the Hessian of $u$ has a small oscillation.
Representations in the form of Symmetric Positive Definite (SPD) matrices have been popularized in a variety of visual learning applications due to their demonstrated ability to capture rich second-order statistics of visual data. There exist several
We give some generic properties of non degeneracy for critical points of functionals. We apply these results, obtaining some theorems of multiplicity of solutions for the equation -{epsilon}^2Delta_g u+u=|u|p-2u in M, u in H_g^1(M) where M is a compa
Conformal geometry is studied using the unfolded formulation `a la Vasiliev. Analyzing the first-order consistency of the unfolded equations, we identify the content of zero-forms as the spin-two off-shell Fradkin-Tseytlin module of $mathfrak{so}(2,d