ﻻ يوجد ملخص باللغة العربية
We consider variational integrals of the form $int F(D^2u)$ where $F$ is convex and smooth on the Hessian space. We show that a critical point $uin W^{2,infty}$ of such a functional under compactly supported variations is smooth if the Hessian of $u$ has a small oscillation.
We give some generic properties of non degeneracy for critical points of functionals. We apply these results, obtaining some theorems of multiplicity of solutions for the equation -{epsilon}^2Delta_g u+u=|u|p-2u in M, u in H_g^1(M) where M is a compa
We consider Dirichlet problems for linear elliptic equations of second order in divergence form on a bounded or exterior smooth domain $Omega$ in $mathbb{R}^n$, $n ge 3$, with drifts $mathbf{b}$ in the critical weak $L^n$-space $L^{n,infty}(Omega ; m
We show that convex viscosity solutions of the Lagrangian mean curvature equation are regular if the Lagrangian phase has Holder continuous second derivatives.
We consider critical points of a class of functionals on compact four-dimensional manifolds arising from Regularized Determinants for conformally covariant operators, whose explicit form was derived in [10], extending Polyakovs formula. These corresp
In this paper, we establish a global regularity result for the optimal transport problem with the quadratic cost, where the domains may not be convex. This result is obtained by a perturbation argument, using a recent global regularity of optimal transportation in convex domains by the authors.