ﻻ يوجد ملخص باللغة العربية
Boson stars may consist of a new type of light singlet scalar particles with nontrivial self-interactions, and may compose a fraction of the dark matter in the Universe. In this work, we study the dynamics of boson stars with Liouville and logarithmic scalar self-interaction potentials as benchmarks. We perform a numerical analysis as well as a semi-analytic study on how the compactness and the total mass will deviate from that of the usual boson stars formed with a quartic repulsive self-interaction. We apply the recently suggested Swampland conjecture to examine whether boson stars with such benchmark potentials belong to the Landscape of a quantum gravity. Using the mass constraint on the macroscopic compact halo object (MACHO) and the cold dark matter (CDM) isocurvature mode constraint from the cosmic microwave background (CMB), we derive the allowed mass range of scalar particles which compose the boson star. We further analyze applications of the lensing of fast radio bursts (FRBs) and the gravitational wave (GW) detection to probe the presence of such boson stars and constrain the parameter space of their corresponding models. We discuss how the two types of boson star potentials can be discriminated by the FRB and GW measurements.
Stochastic gravitational wave backgrounds, predicted in many models of the early universe and also generated by various astrophysical processes, are a powerful probe of the Universe. The spectral shape is key information to distinguish the origin of
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper
Several fast radio bursts have been discovered recently, showing a bright, highly dispersed millisecond radio pulse. The pulses do not repeat and are not associated with a known pulsar or gamma-ray burst. The high dispersion suggests sources at cosmo
We present a new signature by which to one could potentially discriminate between a spectrum of gravitational radiation generated by a self-ordering scalar field vs that of inflation, specifically a comparison of the magnitude of a flat spectrum at f
The dispersion measure -- redshift relation of Fast Radio Bursts, $mathrm{DM}(z)$, has been proposed as a potential new probe of the cosmos, complementary to existing techniques. In practice, however, the effectiveness of this approach depends on a n