ﻻ يوجد ملخص باللغة العربية
The dispersion measure -- redshift relation of Fast Radio Bursts, $mathrm{DM}(z)$, has been proposed as a potential new probe of the cosmos, complementary to existing techniques. In practice, however, the effectiveness of this approach depends on a number of factors, including (but not limited to) the intrinsic scatter in the data caused by intervening matter inhomogeneities. Here, we simulate a number of catalogues of mock FRB observations, and use MCMC techniques to forecast constraints, and assess which parameters will likely be best constrained. In all cases we find that any potential improvement in cosmological constraints are limited by the current uncertainty on the the diffuse gas fraction, $f_{rm d}(z)$. Instead, we find that the precision of current cosmological constraints allows one to constrain $f_{rm d}(z)$, and possibly its redshift evolution. Combining CMB + BAO + SNe + $H_0$ constraints with just 100 FRBs (with redshifts), we find a typical constraint on the mean diffuse gas fraction of a few percent. A detection of this nature would alleviate the missing baryon problem, and therefore highlights the value of localisation and spectroscopic followup of future FRB detections.
The precise localization (<1) of multiple fast radio bursts (FRBs) to z>0.1 galaxies has confirmed that the dispersion measures (DMs) of these enigmatic sources afford a new opportunity to probe the diffuse ionized gas around and in between galaxies.
The joint analysis of the Dispersion and Faraday Rotation Measure from distant, polarised Fast Radio Bursts may be used to put constraints on the origin and distribution of extragalactic magnetic fields on cosmological scales. While the combination o
The recently discovered fast radio bursts (FRBs), presumably of extra-galactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dis
The turbulence in the diffuse intergalactic medium (IGM) plays an important role in various astrophysical processes across cosmic time, but it is very challenging to constrain its statistical properties both observationally and numerically. Via the s
High-precision cosmological probes have revealed a small but significant tension between the parameters measured with different techniques, among which there is one based on time delays in gravitational lenses. We discuss a new way of using time dela