ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Gravitational Wave Signature from Cosmic Phase Transitions at Different Scales

126   0   0.0 ( 0 )
 نشر من قبل Lawrence M. Krauss
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new signature by which to one could potentially discriminate between a spectrum of gravitational radiation generated by a self-ordering scalar field vs that of inflation, specifically a comparison of the magnitude of a flat spectrum at frequencies probed by future direct detection experiments to the magnitude of a possible polarization signal in the Cosmic Microwave Background (CMB) radiation. In the process we clarify several issues related to the proper calculation of such modes, focusing on the effect of post-horizon-crossing evolution.



قيم البحث

اقرأ أيضاً

Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper ties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions $Gmu gtrsim mathcal{O}(10^{-17})$, improving by about $6$ orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially $3$ orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISAs frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in the CMB, but if primordial fluctuations carry an isocurvature component, this need no longer be true. It is shown that in non-minimal inflationary and reheating settings, primordial isocurvature can survive in GWB and exhibit significant non-Gaussianity (NG) in contrast to the CMB, while obeying current observational bounds. While probing such NG GWB is at best a marginal possibility at LISA, there is much greater scope at future proposed detectors such as DECIGO and BBO. It is even possible that the first observations of inflation-era NG could be made with gravitational wave detectors as opposed to the CMB or Large-Scale Structure surveys.
Stochastic gravitational wave backgrounds, predicted in many models of the early universe and also generated by various astrophysical processes, are a powerful probe of the Universe. The spectral shape is key information to distinguish the origin of the background since different production mechanisms predict different shapes of the spectrum. In this paper, we investigate how precisely future gravitational wave detectors can determine the spectral shape using single and broken power-law templates. We consider the detector network of Advanced-LIGO, Advanced-Virgo and KAGRA and the space-based gravitational-wave detector DECIGO, and estimate the parameter space which could be explored by these detectors. We find that, when the spectrum changes its slope in the frequency range of the sensitivity, the broken power-law templates dramatically improve the $chi^2$ fit compared with the single power-law templates and help to measure the shape with a good precision.
We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational bac k reaction, calculate the average spectrum of gravitational waves emitted by the string population at any given time, and propagate it through a standard model cosmology to find the stochastic background today. We take into account all known effects, including changes in the number of cosmological relativistic degrees of freedom at early times and the possibility that some energy is in rare bursts that we might never have observed.
Gravitational waves (GWs) are one of the key signatures of cosmic strings. If GWs from cosmic strings are detected in future experiments, not only their existence can be confirmed but also their properties might be probed. In this paper, we study the determination of cosmic string parameters through direct detection of GW signatures in future ground-based GW experiments. We consider two types of GWs, bursts and the stochastic GW background, which provide us with different information about cosmic string properties. Performing the Fisher matrix calculation on the cosmic string parameters, such as parameters governing the string tension $Gmu$ and initial loop size $alpha$ and the reconnection probability $p$, we find that the two different types of GW can break degeneracies in some of these parameters and provide better constraints than those from each measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا