ترغب بنشر مسار تعليمي؟ اضغط هنا

Autonomous multipartite entanglement engines

80   0   0.0 ( 0 )
 نشر من قبل Jonatan Bohr Brask
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The generation of genuine multipartite entangled states is challenging in practice. Here we explore a new route to this task, via autonomous entanglement engines which use only incoherent coupling to thermal baths and time-independent interactions. We present a general machine architecture, which allows for the generation of a broad range of multipartite entangled states in a heralded manner. Specifically, given a target multiple-qubit state, we give a sufficient condition ensuring that it can be generated by our machine. We discuss the cases of Greenberger-Horne-Zeilinger, Dicke and cluster states in detail. These results demonstrate the potential of purely thermal resources for creating multipartite entangled states useful for quantum information processing.



قيم البحث

اقرأ أيضاً

Entangled systems in experiments may be lost or offline in distributed quantum information processing. This inspires a general problem to characterize quantum operations which result in breaking of entanglement or not. Our goal in this work is to sol ve this problem both in single entanglement and network scenarios. We firstly propose a local model for characterizing all entangled states that are breaking for losing particles. This implies a simple criterion for witnessing single entanglement such as generalized GHZ states and Dicke states. It further provides an efficient witness for characterizing entangled quantum networks depending mainly on the connectivity of network configurations such as $k$-independent quantum networks, completely connected quantum networks, and $k$-connected quantum networks. These networks are universal resources for measurement-based quantum computations. The strong nonlocality can be finally verified by using nonlinear inequalities. These results show distinctive features of both single entangled systems and entangled quantum networks.
The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipart ite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$. We propose an alternative definition for genuine multipartite entanglement, whereby a quantum state is genuinely network $k$-entangled if it cannot be produced by applying local trace-preserving maps over several $k$-partite states distributed among the parties, even with the aid of global shared randomness. We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
103 - Ming-Xing Luo 2020
The quantum entanglement as one of very important resources has been widely used in quantum information processing. In this work, we present a new kind of genuine multipartite entanglement. It is derived from special geometric feature of entangled sy stems compared with quantum multisource networks. We prove that any symmetric entangled pure state shows stronger nonlocality than the genuinely multipartite nonlocality in the biseparable model. Similar results hold for other entangled pure states with local dimensions no larger than $3$. We further provide computational conditions for witnessing the new nonlocality of noisy states. These results suggest that the present model is useful characterizing a new kind of generic quantum entanglement.
We introduce two operational entanglement measures which are applicable for arbitrary multipartite (pure or mixed) states. One of them characterizes the potentiality of a state to generate other states via local operations assisted by classical commu nication (LOCC) and the other the simplicity of generating the state at hand. We show how these measures can be generalized to two classes of entanglement measures. Moreover, we compute the new measures for pure few-partite systems and use them to characterize the entanglement contained in a three-qubit state. We identify the GHZ- and the W-state as the most powerful pure three-qubit states regarding state manipulation.
109 - Yu Guo , Yanping Jia , Xinping Li 2021
Quantifying genuine entanglement is a crucial task in quantum information theory. In this work, we give an approach of constituting genuine $m$-partite entanglement measure from any bipartite entanglement and any $k$-partite entanglement measure, $3l eq k<m$.In addition, as a complement to the three-qubit concurrence triangle proposed in [Phys. Rev. Lett., 127, 040403], we show that the triangle relation is also valid for any other entanglement measure and system with any dimension. We also discuss the tetrahedron structure for the four-partite system via the triangle relation associated with tripartite and bipartite entanglement respectively. For multipartite system that contains more than four parties, there is no symmetric geometric structure as that of tri- and four-partite cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا