ﻻ يوجد ملخص باللغة العربية
Strong electronic interactions can drive a system into a state with a symmetry breaking. Lattice frustration or competing interactions tend to prevent a symmetry breaking, leading to quantum disordered phases. In spin systems frustration can produce a spin liquid state. Frustration of a charge degree of freedom also can result in various exotic states, however, experimental data on these effects is scarce. In this work we demonstrate how a charge ordered ferroelectric looses the order on cooling to low temperatures using an example of a Mott insulator on a weakly anisotropic triangular lattice $kappa$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl. Typically, a low temperature ordered state is a ground state of a system, and the demonstrated re-entrant behavior is unique. Raman scattering spectroscopy finds that this material enters an insulating ferroelectric `dipole solid state at $T=30~K$, but below $T=15~K$ the order melts, while preserving the insulating energy gap. The resulting phase diagram is relevant to other quantum paraelectric materials.
We report temperature-dependent surface x-ray scattering studies of the orbital ordered surface in La$_{0.5}$Sr$_{1.5}$MnO$_4$. We find that the interfacial width of the electronic order grows as the bulk ordering temperature is approached from below
The emergent properties of quantum materials, such as symmetry-broken phases and associated spectral gaps, can be effectively manipulated by ultrashort photon pulses. Impulsive optical excitation generally results in a complex non-equilibrium electro
The Mott insulator is the quintessential strongly correlated electronic state. We obtain complete insight into the physics of the two-dimensional Mott insulator by extending the slave-fermion (holon-doublon) description to finite temperatures. We fir
We present theoretical results on the high-temperature phase stability and phonon spectra of paramagnetic bcc iron which explicitly take into account many-body effects. Several peculiarities, including a pronounced softening of the [110] transverse (
LiOsO$_3$ has been recently identified as the first unambiguous ferroelectric metal, experimentally realizing a prediction from 1965 by Anderson and Blount. In this work, we investigate the metallic state in LiOsO$_3$ by means of infrared spectroscop