ﻻ يوجد ملخص باللغة العربية
The Mott insulator is the quintessential strongly correlated electronic state. We obtain complete insight into the physics of the two-dimensional Mott insulator by extending the slave-fermion (holon-doublon) description to finite temperatures. We first benchmark its predictions against state-of-the-art quantum Monte Carlo simulations, demonstrating quantitative agreement. Qualitatively, the short-ranged spin fluctuations both induce holon-doublon bound states and renormalize the charge sector to form the Hubbard bands. The Mott gap is understood as the charge gap renormalized downwards by these spin fluctuations. As temperature increases, the Mott gap closes before the charge gap, causing a pseudogap regime to appear naturally during the melting of the Mott insulator.
Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics in the charge-density-wave/Mott insulator 1T-TaS2. After strong photoexcitation, a prompt los
We study the dynamical response of the half-filled one-dimensional(1d) Hubbard model for a range of interaction strengths $U$ and temperatures $T$ by a combination of numerical and analytical techniques. Using time-dependent density matrix renormaliz
We report on the dramatic slowing down of the charge carrier dynamics in a quasi-two-dimensional organic conductor, which can be reversibly tuned through the Mott metal-insulator transition (MIT). At the finite-temperature critical endpoint we observ
Using a nonequilibrium implementation of the extended dynamical mean field theory (EDMFT) we simulate the relaxation after photo excitation in a strongly correlated electron system with antiferromagnetic spin interactions. We consider the $t$-$J$ mod
The correlation-driven Mott transition is commonly characterized by a drop in resistivity across the insulator-metal phase boundary; yet, the complex permittivity provides a deeper insight into the microscopic nature. We investigate the frequency- an