ﻻ يوجد ملخص باللغة العربية
We study the moduli space of rank 2 instanton sheaves on $p3$ in terms of representations of a quiver consisting of 3 vertices and 4 arrows between two pairs of vertices. Aiming at an alternative compactification for the moduli space of instanton sheaves, we show that for each rank 2 instanton sheaf, there is a stability parameter $theta$ for which the corresponding quiver representation is $theta$-stable (in the sense of King), and that the space of stability parameters has a non trivial wall-and-chamber decomposition. Looking more closely at instantons of low charge, we prove that there are stability parameters with respect to which every representation corresponding to a rank 2 instanton sheaf of charge 2 is stable, and provide a complete description of the wall-and-chamber decomposition for representation corresponding to a rank 2 instanton sheaf of charge 1.
We extend the scope of a former paper to vector bundle problems involving more than one vector bundle. As the main application, we obtain the solution of the well-known moduli problems of vector bundles associated with general quivers.
We study the irreducible components of the moduli space of instanton sheaves on $mathbb{P}^3$, that is rank 2 torsion free sheaves $E$ with $c_1(E)=c_3(E)=0$ satisfying $h^1(E(-2))=h^2(E(-2))=0$. In particular, we classify all instanton sheaves with
We extend the results of [GVX] to the setting of a stable polar representation G|V (G connected, reductive over C), satisfying some mild additional hypotheses. Given a G-equivariant rank one local system L on the general fiber of the quotient map f :
This is a survey article for Handbook of Linear Algebra, 2nd ed., Chapman & Hall/CRC, 2014. An informal introduction to representations of quivers and finite dimensional algebras from a linear algebraists point of view is given. The notion of quiver
It is shown that, given a representation of a quiver over a finite field, one can check in polynomial time whether it is absolutely indecomposable.