This is a survey article for Handbook of Linear Algebra, 2nd ed., Chapman & Hall/CRC, 2014. An informal introduction to representations of quivers and finite dimensional algebras from a linear algebraists point of view is given. The notion of quiver
representations is extended to representations of mixed graphs, which permits one to study systems of linear mappings and bilinear or sesquilinear forms. The problem of classifying such systems is reduced to the problem of classifying systems of linear mappings.
In arXiv:0810.2076 we presented a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the representation varieties of Riemann surfaces with semi-simple conjugacy classes at the
punctures. We proved several results which support this conjecture. Here we announce new results which are consequences of those of arXiv:0810.2076.
We introduce the notion of a super-representation of a quiver. For super-representations of quivers over a field of characteristic zero, we describe the corresponding (super)algebras of polynomial semi-invariants and polynomial invariants.
In this paper we investigate locally free representations of a quiver Q over a commutative Frobenius algebra R by arithmetic Fourier transform. When the base field is finite we prove that the number of isomorphism classes of absolutely indecomposable
locally free representations of fixed rank is independent of the orientation of Q. We also prove that the number of isomorphism classes of locally free absolutely indecomposable representations of the preprojective algebra of Q over R equals the number of isomorphism classes of locally free absolutely indecomposable representations of Q over R[t]/(t^2). Using these results together with results of Geiss, Leclerc and Schroer we give, when k is algebraically closed, a classification of pairs (Q,R) such that the set of isomorphism classes of indecomposable locally free representations of Q over R is finite. Finally, when the representation is free of rank 1 at each vertex of Q, we study the function that counts the number of isomorphism classes of absolutely indecomposable locally free representations of Q over the Frobenius algebra F_q[t]/(t^r). We prove that they are polynomial in q and their generating function is rational and satisfies a functional equation.
In this paper we prove that the counting polynomials of certain torus orbits in products of partial flag varieties coincides with the Kac polynomials of supernova quivers, which arise in the study of the moduli spaces of certain irregular meromorphic
connections on trivial bundles over the projective line. We also prove that these polynomials can be expressed as a specialization of Tutte polynomials of certain graphs providing a combinatorial proof of the non-negativity of their coefficients.