ترغب بنشر مسار تعليمي؟ اضغط هنا

Representations of quivers and mixed graphs

125   0   0.0 ( 0 )
 نشر من قبل Vladimir Sergeichuk V.
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a survey article for Handbook of Linear Algebra, 2nd ed., Chapman & Hall/CRC, 2014. An informal introduction to representations of quivers and finite dimensional algebras from a linear algebraists point of view is given. The notion of quiver representations is extended to representations of mixed graphs, which permits one to study systems of linear mappings and bilinear or sesquilinear forms. The problem of classifying such systems is reduced to the problem of classifying systems of linear mappings.



قيم البحث

اقرأ أيضاً

81 - Victor G. Kac 2019
It is shown that, given a representation of a quiver over a finite field, one can check in polynomial time whether it is absolutely indecomposable.
In arXiv:0810.2076 we presented a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the representation varieties of Riemann surfaces with semi-simple conjugacy classes at the punctures. We proved several results which support this conjecture. Here we announce new results which are consequences of those of arXiv:0810.2076.
116 - V.A. Bovdi , A.N. Zubkov 2019
We introduce the notion of a super-representation of a quiver. For super-representations of quivers over a field of characteristic zero, we describe the corresponding (super)algebras of polynomial semi-invariants and polynomial invariants.
In this paper we investigate locally free representations of a quiver Q over a commutative Frobenius algebra R by arithmetic Fourier transform. When the base field is finite we prove that the number of isomorphism classes of absolutely indecomposable locally free representations of fixed rank is independent of the orientation of Q. We also prove that the number of isomorphism classes of locally free absolutely indecomposable representations of the preprojective algebra of Q over R equals the number of isomorphism classes of locally free absolutely indecomposable representations of Q over R[t]/(t^2). Using these results together with results of Geiss, Leclerc and Schroer we give, when k is algebraically closed, a classification of pairs (Q,R) such that the set of isomorphism classes of indecomposable locally free representations of Q over R is finite. Finally, when the representation is free of rank 1 at each vertex of Q, we study the function that counts the number of isomorphism classes of absolutely indecomposable locally free representations of Q over the Frobenius algebra F_q[t]/(t^r). We prove that they are polynomial in q and their generating function is rational and satisfies a functional equation.
Let G be a complex reductive group acting on a finite-dimensional complex vector space H. Let B be a Borel subgroup of G and let T be the associated torus. The Mumford cone is the polyhedral cone generated by the T-weights of the polynomial functions on H which are semi-invariant under the Borel subgroup. In this article, we determine the inequalities of the Mumford cone in the case of the linear representation associated to a quiver and a dimension vector n=(n_x). We give these inequalities in terms of filtered dimension vectors, and we directly adapt Schofields argument to inductively determine the dimension vectors of general subrepresentations in the filtered context. In particular, this gives one further proof of the Horn inequalities for tensor products.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا