ترغب بنشر مسار تعليمي؟ اضغط هنا

From Static to Cosmological Solutions of N=2 Supergravity

77   0   0.0 ( 0 )
 نشر من قبل Thomas Mohaupt
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain cosmological solutions with Kasner-like asymptotics in N=2 gauged and ungauged supergravity by maximal analytic continuation of plan



قيم البحث

اقرأ أيضاً

We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a si ngle real scalar survives, the theory is reduced to an Einstein-scalar system with a potential, which admits at most two AdS critical points and is expressed in terms of a real superpotential. Our solution is static, admits maximally symmetric horizons, asymptotically tends to AdS space corresponding to an extremum of the superpotential, but is disconnected from the Schwarzschild-AdS family. The condition under which the spacetime admits an event horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons the black holes can be extremal. In this case, the near-horizon geometry is AdS_2 x H^2, where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our solution displays fall-off behaviours different from the standard one, due to the fact that the mass parameter $m^2=-2/ell^2$ at the supersymmetric vacuum lies in a characteristic range $m^2_{BF}le m^2le m^2_{rm BF}+ell^{-2}$ for which the slowly decaying scalar field is also normalizable. Nevertheless, we identify a well-defined mass for our spacetime, following the prescription of Hertog and Maeda. Quite remarkably, the product of all horizon areas is not given in terms of the asymptotic cosmological constant alone, as one would expect in absence of electromagnetic charges and angular momentum. Our solution shows qualitatively the same thermodynamic behaviour as the Schwarzschild-AdS black hole, but the entropy is always smaller for a given mass and AdS curvature radius. We also find that our spherical black holes are unstable against radial perturbations.
We embed general solutions to 4D Einstein-Maxwell theory into $mathcal{N} geq 2$ supergravity and study quadratic fluctuations of the supergravity fields around the background. We compute one-loop quantum corrections for all fields and show that the $c$-anomaly vanishes for complete $mathcal{N}=2$ multiplets. Logarithmic corrections to the entropy of Kerr-Newman black holes are therefore universal and independent of black hole parameters.
We investigate a family of SU(3)$times$U(1)$times$U(1)-invariant holographic flows and Janus solutions obtained from gauged $mathcal{N}=8$ supergravity in four dimensions. We give complete details of how to use the uplift formulae to obtain the corre sponding solutions in M theory. While the flow solutions appear to be singular from the four-dimensional perspective, we find that the eleven-dimensional solutions are much better behaved and give rise to interesting new classes of compactification geometries that are smooth, up to orbifolds, in the infra-red limit. Our solutions involve new phases in which M2 branes polarize partially or even completely into M5 branes. We derive the eleven-dimensional supersymmetries and show that the eleven-dimensional equations of motion and BPS equations are indeed satisfied as a consequence of their four-dimensional counterparts. Apart from elucidating a whole new class of eleven-dimensional Janus and flow solutions, our work provides extensive and highly non-trivial tests of the recently-derived uplift formulae.
141 - A. Coley , A. Fuster , S. Hervik 2008
We study a class of constant scalar invariant (CSI) spacetimes, which belong to the higher-dimensional Kundt class, that are solutions of supergravity. We review the known CSI supergravity solutions in this class and we explicitly present a number of new exact CSI supergravity solutions, some of which are Einstein.
For general off-shell N=2 supergravity-matter systems in three spacetime dimensions, a formalism is developed to reduce the corresponding actions from superspace to components. The component actions are explicitly computed in the cases of Type I and Type II minimal supergravity formulations. We describe the models for topologically massive supergravity which correspond to all the known off-shell formulations for three-dimensional N=2 supergravity. We also present a universal setting to construct supersymmetric backgrounds associated with these off-shell supergravities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا