ترغب بنشر مسار تعليمي؟ اضغط هنا

Hairy black holes in N=2 gauged supergravity

131   0   0.0 ( 0 )
 نشر من قبل Dietmar Klemm
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a single real scalar survives, the theory is reduced to an Einstein-scalar system with a potential, which admits at most two AdS critical points and is expressed in terms of a real superpotential. Our solution is static, admits maximally symmetric horizons, asymptotically tends to AdS space corresponding to an extremum of the superpotential, but is disconnected from the Schwarzschild-AdS family. The condition under which the spacetime admits an event horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons the black holes can be extremal. In this case, the near-horizon geometry is AdS_2 x H^2, where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our solution displays fall-off behaviours different from the standard one, due to the fact that the mass parameter $m^2=-2/ell^2$ at the supersymmetric vacuum lies in a characteristic range $m^2_{BF}le m^2le m^2_{rm BF}+ell^{-2}$ for which the slowly decaying scalar field is also normalizable. Nevertheless, we identify a well-defined mass for our spacetime, following the prescription of Hertog and Maeda. Quite remarkably, the product of all horizon areas is not given in terms of the asymptotic cosmological constant alone, as one would expect in absence of electromagnetic charges and angular momentum. Our solution shows qualitatively the same thermodynamic behaviour as the Schwarzschild-AdS black hole, but the entropy is always smaller for a given mass and AdS curvature radius. We also find that our spherical black holes are unstable against radial perturbations.



قيم البحث

اقرأ أيضاً

In this paper, we analyze the static solutions for the $U(1)^{4}$ consistent truncation of the maximally supersymmetric gauged supergravity in four dimensions. Using a new parametrization of the known solutions it is shown that for fixed charges ther e exist three possible black hole configurations according to the pattern of symmetry breaking of the (scalars sector of the) Lagrangian. Namely a black hole without scalar fields, a black hole with a primary hair and a black hole with a secondary hair respectively. This is the first, exact, example of a black hole with a primary scalar hair, where both the black hole and the scalar fields are regular on and outside the horizon. The configurations with secondary and primary hair can be interpreted as a spontaneous symmetry breaking of discrete permutation and reflection symmetries of the action. It is shown that there exist a triple point in the thermodynamic phase space where the three solution coexist. The corresponding phase transitions are discussed and the free energies are written explicitly as function of the thermodynamic coordinates in the uncharged case. In the charged case the free energies of the primary hair and the hairless black hole are also given as functions of the thermodynamic coordinates.
We do a systematic study of the phases of gravity coupled to an electromagnetic field and charged scalar in flat space, with box boundary conditions. The scalar-less box has previously been investigated by Braden, Brown, Whiting and York (and others) before AdS/CFT and we elaborate and extend their results in a language more familiar from holography. The phase diagram of the system is analogous to that of AdS black holes, but we emphasize the differences and explain their origin. Once the scalar is added, we show that the system admits both boson stars as well as hairy black holes as solutions, providing yet another way to evade flat space no-hair theorems. Furthermore both these solutions can exist as stable phases in regions of the phase diagram. The final picture of the phases that emerges is strikingly similar to that found recently for holographic superconductors in global AdS, arXiv: 1602.07211. Our construction lays bare certain previously unnoticed subtleties associated to the definition quasi-local charges for gravitating scalar fields in finite regions.
We construct supersymmetric black holes with rotation or NUT charge for the $overline{mathbb{C}text{P}}^n$- and the $text{t}^3$ model of $N=2$, $D=4$ $text{U}(1)$ FI-gauged supergravity. The solutions preserve 2 real supercharges, which are doubled f or their near-horizon geometry. For the $overline{mathbb{C}text{P}}^n$ model we also present a generalization to the nonextremal case, which turns out to be characterized by a Carter-Plebanski-type metric, and has $n+3$ independent parameters, corresponding to mass, angular momentum as well as $n+1$ magnetic charges. We discuss the thermodynamics of these solutions, obtain a Christodoulou-Ruffini mass formula, and shew that they obey a first law of thermodynamics and that the product of horizon areas depends on the angular momentum and the magnetic charges only. At least some of the BPS black holes that we obtain may become instrumental for future microscopic entropy computations involving a supersymmetric index.
We investigate whether supertranslation symmetry may appear in a scenario that involves black holes in AdS space. The framework we consider is massive 3D gravity, which admits a rich black hole phase space, including stationary AdS black holes with s oftly decaying hair. We consider a set of asymptotic conditions that permits such decaying near the boundary, and which, in addition to the local conformal symmetry, is preserved by an extra local current. The corresponding algebra of diffeomorphisms consists of two copies of Virasoro algebra in semi-direct sum with an infinite-dimensional Abelian ideal. We then reorient the analysis to the near horizon region, where infinite-dimensional symmetries also appear. The supertranslation symmetry at the horizon yields an infinite set of non-trivial charges, which we explicitly compute. The zero-mode of these charges correctly reproduces the black hole entropy. In contrast to Einstein gravity, in the higher-derivative theory subleading terms in the near horizon expansion contribute to the near horizon charges. Such terms happen to capture the higher-curvature corrections to the Bekenstein area law.
We study asymptotically flat black holes with massive graviton hair within the ghost-free bigravity theory. There have been contradictory statements in the literature about their existence -- such solutions were reported some time ago, but later a di fferent group claimed the Schwarzschild solution to be the only asymptotically flat black hole in the theory. As a result, the controversy emerged. We have analyzed the issue ourselves and have been able to construct such solutions within a carefully designed numerical scheme. We find that for given parameter values there can be one or two asymptotically flat hairy black holes in addition to the Schwarzschild solution. We analyze their perturbative stability and find that they can be stable or unstable, depending on the parameter values. The masses of stable hairy black holes that would be physically relevant range form stellar values up to values typical for supermassive black holes. One of their two metrics is extremely close to Schwarzschild, while all their hair is hidden in the second metric that is not coupled to matter and not directly seen. If the massive bigravity theory indeed describes physics, the hair of such black holes should manifest themselves in violent processes like black hole collisions and should be visible in the structure of the signals detected by LIGO/VIRGO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا