ﻻ يوجد ملخص باللغة العربية
We investigate a family of SU(3)$times$U(1)$times$U(1)-invariant holographic flows and Janus solutions obtained from gauged $mathcal{N}=8$ supergravity in four dimensions. We give complete details of how to use the uplift formulae to obtain the corresponding solutions in M theory. While the flow solutions appear to be singular from the four-dimensional perspective, we find that the eleven-dimensional solutions are much better behaved and give rise to interesting new classes of compactification geometries that are smooth, up to orbifolds, in the infra-red limit. Our solutions involve new phases in which M2 branes polarize partially or even completely into M5 branes. We derive the eleven-dimensional supersymmetries and show that the eleven-dimensional equations of motion and BPS equations are indeed satisfied as a consequence of their four-dimensional counterparts. Apart from elucidating a whole new class of eleven-dimensional Janus and flow solutions, our work provides extensive and highly non-trivial tests of the recently-derived uplift formulae.
We discuss a possibility of restricting parameters in $mathcal{N}=2$ supergravity based on axion observations. We derive conditions that prepotential and gauge couplings should satisfy. Such conditions not only allow us to constrain the theory but al
We consider N=1 supersymmetric renormalization group flows of N=4 Yang-Mills theory from the perspective of ten-dimensional IIB supergravity. We explicitly construct the complete ten-dimensional lift of the flow in which exactly one chiral superfield
We obtain cosmological solutions with Kasner-like asymptotics in N=2 gauged and ungauged supergravity by maximal analytic continuation of plan
We obtain Yang-Mills $SU(2)times G$ gauged supergravity in three dimensions from $SU(2)$ group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of $G$. T
Similarly to the bosonic Liouville theory, the $mathcal{N}=2$ supersymmetric Liouville theory was conjectured to be equipped with the duality that exchanges the superpotential and the Kahler potential. The conjectured duality, however, seems to suffe