ﻻ يوجد ملخص باللغة العربية
We have presented in this communication a new solving procedure for the dynamics of non-rigid asteroid rotation, considering the final spin state of rotation for a small celestial body (asteroid). The last condition means the ultimate absence of the applied external torques (including short-term effect from torques during collisions, long-term YORP effect, etc.). Fundamental law of angular momentum conservation has been used for the aforementioned solving procedure. The system of Euler equations for dynamics of non-rigid asteroid rotation has been explored with regard to the existence of an analytic way of presentation of the approximated solution. Despite of various perturbations (such as collisions, YORP effect) which destabilize the rotation of asteroid via deviating from the current spin state, the inelastic (mainly, tidal) dissipation reduces kinetic energy of asteroid. So, evolution of the spinning asteroid should be resulting by the rotation about maximal-inertia axis with the proper spin state corresponding to minimal energy with a fixed angular momentum. Basing on the aforesaid assumption (component K_1 is supposed to be fluctuating near the given appropriate constant of the fixed angular momentum), we have obtained that 2-nd component K_2 is the solution of appropriate Riccati ordinary differential equation of 1-st order, whereas component K_3 should be determined via expression for K_2.
The main motivation of this research is the analytical exploration of the dynamics of asteroid rotation when it moves in elliptic orbit through Space. According to the results of Efroimsky, Frouard (2016), various perturbations (collisions, close enc
The generalized Euler case (rigid body rotation over the fixed point) is discussed here: - the center of masses of non-symmetric rigid body is assumed to be located at the equatorial plane on axis Oy which is perpendicular to the main principal axis
The main objective for this research was the analytical exploration of the dynamics of planar satellite rotation during the motion of an elliptical orbit around a planet. First, we revisit the results of J. Wisdom et al. (1984), in which, by the eleg
In the Dirac theory of the quantum-mechanical interaction of a magnetic monopole and an electric charge, the vector potential is singular from the origin to infinity along certain direction - the so called Dirac string. Imposing the famous quantizati
The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared to compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advant