ترغب بنشر مسار تعليمي؟ اضغط هنا

On the invariant motions of rigid body rotation over the fixed point, via Euler angles

100   0   0.0 ( 0 )
 نشر من قبل Sergey Ershkov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sergey V. Ershkov




اسأل ChatGPT حول البحث

The generalized Euler case (rigid body rotation over the fixed point) is discussed here: - the center of masses of non-symmetric rigid body is assumed to be located at the equatorial plane on axis Oy which is perpendicular to the main principal axis Ox of inertia at the fixed point. Such a case was presented in the rotating coordinate system, in a frame of reference fixed in the rotating body for the case of rotation over the fixed point (at given initial conditions). In our derivation, we have represented the generalized Euler case in the fixed Cartesian coordinate system; so, the motivation of our ansatz is to elegantly transform the proper components of the previously presented solution from one (rotating) coordinate system to another (fixed) Cartesian coordinates. Besides, we have obtained an elegantly analytical case of general type of rotations; also, we have presented it in the fixed Cartesian coordinate system via Euler angles.



قيم البحث

اقرأ أيضاً

We have presented in this communication a new solving procedure for the dynamics of non-rigid asteroid rotation, considering the final spin state of rotation for a small celestial body (asteroid). The last condition means the ultimate absence of the applied external torques (including short-term effect from torques during collisions, long-term YORP effect, etc.). Fundamental law of angular momentum conservation has been used for the aforementioned solving procedure. The system of Euler equations for dynamics of non-rigid asteroid rotation has been explored with regard to the existence of an analytic way of presentation of the approximated solution. Despite of various perturbations (such as collisions, YORP effect) which destabilize the rotation of asteroid via deviating from the current spin state, the inelastic (mainly, tidal) dissipation reduces kinetic energy of asteroid. So, evolution of the spinning asteroid should be resulting by the rotation about maximal-inertia axis with the proper spin state corresponding to minimal energy with a fixed angular momentum. Basing on the aforesaid assumption (component K_1 is supposed to be fluctuating near the given appropriate constant of the fixed angular momentum), we have obtained that 2-nd component K_2 is the solution of appropriate Riccati ordinary differential equation of 1-st order, whereas component K_3 should be determined via expression for K_2.
In this paper we reconsider the problem of the Euler parametrization for the unitary groups. After constructing the generic group element in terms of generalized angles, we compute the invariant measure on SU(N) and then we determine the full range o f the parameters, using both topological and geometrical methods. In particular, we show that the given parametrization realizes the group $SU(N+1)$ as a fibration of U(N) over the complex projective space $mathbb{CP}^n$. This justifies the interpretation of the parameters as generalized Euler angles.
The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared to compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advant ages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.
A unified formulation of rigid body dynamics based on Gauss principle is proposed. The Lagrange, Kirchhoff and Newton-Euler equations are seen to arise from different choices of the quasicoordinates in the velocity space. The group-theoretical aspects of the method are discussed.
In this paper, we proceed to develop a new approach which was formulated first in Ershkov (2017) for solving Poisson equations: a new type of the solving procedure for Euler-Poisson equations (rigid body rotation over the fixed point) is suggested in the current research. Meanwhile, the Euler-Poisson system of equations has been successfully explored for the existence of analytical way for presentation of the solution. As the main result, the new ansatz is suggested for solving Euler-Poisson equations: the Euler-Poisson equations are reduced to the system of 3 nonlinear ordinary differential equations of 1-st order in regard to 3 functions; the elegant approximate solution has been obtained via re-inversion of the proper analytical integral as a set of quasi-periodic cycles. So, the system of Euler-Poisson equations is proved to have the analytical solutions (in quadratures) only in classical simplifying cases: 1) Lagrange case, or 2) Kovalevskaya case or 3) Euler case or other well-known but particular cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا