ﻻ يوجد ملخص باللغة العربية
The main objective for this research was the analytical exploration of the dynamics of planar satellite rotation during the motion of an elliptical orbit around a planet. First, we revisit the results of J. Wisdom et al. (1984), in which, by the elegant change of variables (considering the true anomaly f as the independent variable), the governing equation of satellite rotation takes the form of an Abel ODE of the second kind, a sort of generalization of the Riccati ODE. We note that due to the special character of solutions of a Riccati-type ODE, there exists the possibility of sudden jumping in the magnitude of the solution at some moment of time. In the physical sense, this jumping of the Riccati-type solutions of the governing ODE could be associated with the effect of sudden acceleration/deceleration in the satellite rotation around the chosen principle axis at a definite moment of parametric time. This means that there exists not only a chaotic satellite rotation regime (as per the results of J. Wisdom et al. (1984)), but a kind of gradient catastrophe (Arnold 1992) could occur during the satellite rotation process. We especially note that if a gradient catastrophe could occur, this does not mean that it must occur: such a possibility depends on the initial conditions. In addition, we obtained asymptotical solutions that manifest a quasi-periodic character even with the strong simplifying assumptions e ~ 0, p = 1, which reduce the governing equation of J. Wisdom et al. (1984) to a kind of Beletskii equation.
Integral operators of Abel type of order a > 0 arise naturally in a large spectrum of physical processes. Their inversion requires care since the resulting inverse problem is ill-posed. The purpose of this work is to devise and analyse a family of ap
We present in this communication a new solving procedure for Kelvin&Kirchhoff equations, considering the dynamics of falling the rigid rotating torus in an ideal incompressible fluid, assuming additionally the dynamical symmetry of rotation for the r
In this paper, we proceed to develop a new approach which was formulated first in Ershkov (2017) for solving Poisson equations: a new type of the solving procedure for Euler-Poisson equations (rigid body rotation over the fixed point) is suggested in
We have presented in this communication a new solving procedure for the dynamics of non-rigid asteroid rotation, considering the final spin state of rotation for a small celestial body (asteroid). The last condition means the ultimate absence of the
We study the rational solutions of the Abel equation $x=A(t)x^3+B(t)x^2$ where $A,Bin C[t]$. We prove that if $deg(A)$ is even or $deg(B)>(deg(A)-1)/2$ then the equation has at most two rational solutions. For any other case, an upper bound on the nu