ﻻ يوجد ملخص باللغة العربية
Let ${cal M}_{g,[n]}$, for $2g-2+n>0$, be the D-M moduli stack of smooth curves of genus $g$ labeled by $n$ unordered distinct points. The main result of the paper is that a finite, connected etale cover ${cal M}^l$ of ${cal M}_{g,[n]}$, defined over a sub-$p$-adic field $k$, is almost anabelian in the sense conjectured by Grothendieck for curves and their moduli spaces. The precise result is the following. Let $pi_1({cal M}^l_{ol{k}})$ be the geometric algebraic fundamental group of ${cal M}^l$ and let ${Out}^*(pi_1({cal M}^l_{ol{k}}))$ be the group of its exterior automorphisms which preserve the conjugacy classes of elements corresponding to simple loops around the Deligne-Mumford boundary of ${cal M}^l$ (this is the $ast$-condition motivating the almost above). Let us denote by ${Out}^*_{G_k}(pi_1({cal M}^l_{ol{k}}))$ the subgroup consisting of elements which commute with the natural action of the absolute Galois group $G_k$ of $k$. Let us assume, moreover, that the generic point of the D-M stack ${cal M}^l$ has a trivial automorphisms group. Then, there is a natural isomorphism: $${Aut}_k({cal M}^l)cong{Out}^*_{G_k}(pi_1({cal M}^l_{ol{k}})).$$ This partially extends to moduli spaces of curves the anabelian properties proved by Mochizuki for hyperbolic curves over sub-$p$-adic fields.
We study a 3-dimensional stratum $mathcal{M}_{3,V}$ of the moduli space $mathcal{M}_3$ of curves of genus $3$ parameterizing curves $Y$ that admit a certain action of $V= C_2times C_2$. We determine the possible types of the stable reduction of these
This paper describes a class of Artin-Schreier curves, generalizing results of Van der Geer and Van der Vlugt to odd characteristic. The automorphism group of these curves contains a large extraspecial group as a subgroup. Precise knowledge of this s
Contents: Rational functions with given monodromy on generic curves (I. Bouw & S. Wewers); Can deformation rings of group representations not be local complete intersections? (T. Chinburg); Lifting an automorphism group to finite characteristic (G. C
We compute the number of moduli of all irreducible components of the moduli space of smooth curves on Enriques surfaces. In most cases, the moduli maps to the moduli space of Prym curves are generically injective or dominant. Exceptional behaviour is
A fine moduli space is constructed, for cyclic-by-$mathsf{p}$ covers of an affine curve over an algebraically closed field $k$ of characteristic $mathsf{p}>0$. An intersection of finitely many fine moduli spaces for cyclic-by-$mathsf{p}$ covers of af