ﻻ يوجد ملخص باللغة العربية
Black holes are the simplest macroscopic objects, and provide unique tests of General Relativity. They have been compared to the Hydrogen atom in quantum mechanics. Here, we establish a few facts about the simplest systems bound by gravity: black hole binaries. We provide strong evidence for the existence of `global photosurfaces surrounding the binary, and of binary quasinormal modes leading to exponential decay of massless fields when the binary spacetime is slightly perturbed. These two properties go hand in hand, as they did for isolated black holes. The binary quasinormal modes have high quality factor and may be prone to resonant excitations. Finally, we show that energy extraction from binaries is generic and we find evidence of a new mechanism -- akin to the Fermi acceleration process -- whereby the binary transfers energy to its surroundings in a cascading process. The mechanism is conjectured to work when the individual components spin, or are made of compact stars.
We define and sketch the generalized ergosphere of the Majumdar-Papapetrou spacetime. In particular, we demonstrate the existence of closed orbits of negative energy that live outside the event horizon of such a spacetime. Relying on the Penrose proc
We show that light scalars can form quasibound states around binaries. In the nonrelativistic regime, these states are formally described by the quantum-mechanical Schrodinger equation for a one-electron heteronuclear diatomic molecule. We performed
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (li
Collisional Penrose process received much attention when Banados, Silk and West (BSW) pointed out the possibility of test-particle collisions with arbitrarily high centre-of-mass energy in the vicinity of the horizon of an extremally rotating black h
Deep conceptual problems associated with classical black holes can be addressed in string theory by the fuzzball paradigm, which provides a microscopic description of a black hole in terms of a thermodynamically large number of regular, horizonless,