ﻻ يوجد ملخص باللغة العربية
We show that light scalars can form quasibound states around binaries. In the nonrelativistic regime, these states are formally described by the quantum-mechanical Schrodinger equation for a one-electron heteronuclear diatomic molecule. We performed extensive numerical simulations of scalar fields around black hole binaries showing that a scalar structure condenses around the binary -- we dub these states gravitational molecules. We further show that these are well described by the perturbative, nonrelativistic description.
Gravitational waves (GWs) from merging black holes allow for unprecedented probes of strong-field gravity. Testing gravity in this regime requires accurate predictions of gravitational waveform templates in viable extensions of General Relativity. We
LIGO and Virgo have recently observed a number of gravitational wave (GW) signals that are fully consistent with being emitted by binary black holes described by general relativity. However, there are theoretical proposals of exotic objects that can
Large dark matter overdensities can form around black holes of astrophysical and primordial origin as they form and grow. This dark dress inevitably affects the dynamical evolution of binary systems, and induces a dephasing in the gravitational wavef
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (li
The LISA mission will observe gravitational waves emitted from tens of thousands of galactic binaries, in particular white dwarf binary systems. These objects are known to have intense magnetic fields. However, these fields are usually not considered