ﻻ يوجد ملخص باللغة العربية
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (light ring) of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of specific models than on an actual constraining relationship. We also show, in particular, that a better understanding of the dissociation of the two may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.
The rapid advancement of gravitational wave astronomy in recent years has paved the way for the burgeoning development of black hole spectroscopy, which enhances the possibility of testing black holes by their quasinormal modes (QNMs). In this paper,
Deep conceptual problems associated with classical black holes can be addressed in string theory by the fuzzball paradigm, which provides a microscopic description of a black hole in terms of a thermodynamically large number of regular, horizonless,
Quasinormal modes of perturbed black holes have recently gained much interest because of their tight relations with the gravitational wave signals emitted during the post-merger phase of a binary black hole coalescence. One of the intriguing features
In the study of perturbations around black hole configurations, whether an external source can influence the perturbation behavior is an interesting topic to investigate. When the source acts as an initial pulse, it is intuitively acceptable that the
The quasinormal modes (QNMs) of a regular black hole with charge are calculated in the eikonal approximation. In the eikonal limit the QNMs of black hole are determined by the parameters of the unstable circular null geodesics. The behaviors of QNMs