ترغب بنشر مسار تعليمي؟ اضغط هنا

On the long cycle variability of the Algol OGLE-LMC-DPV-065 and its stellar, orbital and disk parameters

96   0   0.0 ( 0 )
 نشر من قبل Ronald Mennickent Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

OGLE-LMC-DPV-065 is an interacting binary whose double-hump long photometric cycle remains hitherto unexplained. We analyze photometric time series available in archive datasets spanning 124 years and present the analysis of new high-resolution spectra. A refined orbital period is found of 10fd0316267 $pm$ 0fd0000056 without any evidence of variability. In spite of this constancy, small but significant changes in timings of the secondary eclipse are detected. We show that the long period continuously decreases from 350 to 218 days during 13 years, then remains almost constant for about 10 years. Our study of radial velocities indicates a circular orbit for the binary and yields a mass ratio of 0.203 $pm$ 0.001. From the analysis of the orbital light curve we find that the system contains 13.8 and 2.81 msun stars of radii 8.8 and 12.6 rsun and absolute bolometric magnitudes -6.4 and -3.0, respectively. The orbit semi-major axis is 49.9 rsun and the stellar temperatures are 25460 K and 9825 K. We find evidence for an optically and geometrically thick disk around the hotter star. According to our model, the disk has a radius of 25 rsun, central and outer vertical thickness of 1.6 rsun and 3.5 rsun, and temperature of 9380 K at its outer edge. Two shock regions located at roughly opposite parts of the outer disk rim can explain the light curves asymmetries. The system is a member of the double periodic variables and its relatively high-mass and long photometric cycle make it similar in some aspects to $beta$ Lyrae.



قيم البحث

اقرأ أيضاً

Double Periodic Variables (DPVs) are hot Algols showing a long photometric cycle of uncertain origin. We report the discovery of changes in the orbital light curve of OGLE-LMC-DPV-097 which depend on the phase of its long photometric cycle. During th e ascending branch of the long-cycle the brightness at the first quadrature is larger than during the second quadrature, during the maximum of the long-cycle the brightness is basically the same at both quadratures, during the descending branch the brightness at the second quadrature is larger than during the first quadrature and during the minimum of the long-cycle the secondary minimum disappears. We model the light curve at different phases of the long-cycle and find that the data are consistent with changes in the properties of the accretion disk and two disk spots. The disks size and temperature change with the long-cycle period. We find a smaller and hotter disk at minimum and larger and cooler disk at maximum. The spot temperatures, locations and angular sizes also show variability during the long-cycle.
We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud. The system consists of two late G-type giant stars on an eccentric orbit and orbital period of ~200 days. The system shows total eclipses an d the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson Devinney code. We derived orbital and physical parameters of the binary with a high precision of < 1 %. The masses and surface metallicities of the components are virtually the same and equal to 2.23 +/- 0.02 M_sun and [Fe/H] = -0.63 +/- 0.10 dex. However their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M) = 18.452 +/- 0.023 (statistical) +/- 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter we applied a geometrical correction for its position in the LMC disc using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is d_LMC = 50.30 +/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzynski et al.(2013).
The subtype of hot algol semidetached binaries dubbed Double Periodic Variables (DPVs) are characterized by a photometric cycle longer than the orbital one, whose nature has been related to a magnetic dynamo in the donor component controlling the mas s transfer rate. We aim to understand the morphologic changes observed in the light curve of OGLE-BLG-ECL-157529 that are linked to the long cycle. In particular, we want to explain the changes in relative depth of primary and secondary eclipses. We analyze $I$ and $V$-band OGLE photometric times series spanning 18.5 years and model the orbital light curve. We find that OGLE-BLG-ECL-157529 is a new eclipsing Galactic DPV of orbital period 24fd8, and that its long cycle length decreases in amplitude and length during the time baseline. We show that the changes of the orbital light curve can be reproduced considering an accretion disk of variable thickness and radius, surrounding the hottest stellar component. Our models indicate changes in the temperatures of hot spot and bright spot during the long cycle, and also in the position of the bright spot. This, along with the changes in disk radius might indicate a variable mass transfer in this system.
Some close binaries of the beta Lyrae type show photometric cycles longer than the orbital one, which are possibly related to changes in their accretion disks. We aim to understand the short- and long-scale changes observed in the light curve of the eclipsing system OGLE-BLG-ECL-157529. In particular, we want to shed light on the contribution of the disk to these changes, especially those related to the long cycle, occurring on timescales of hundreds of days. We studied I-band OGLE photometric times series spanning 18.5 years, constructing disk models by analyzing the orbital light curve at 52 consecutive epochs. An optimized simplex algorithm was used to solve the inverse problem by adjusting the light curve with the best stellar-orbital-disk parameters for the system. We applied principal components analysis to the parameters to evaluate their dependence and variability. We constructed a description of the mass transfer rate in terms of disk parameters. We find that the light variability can be understood in terms of a variable mass transfer rate and variable accretion disk. The system brightness at orbital phase 0.25 follows the long cycle and is correlated with the mass transfer rate and the disk thickness. The long-cycle brightness variations can be understood in terms of differential occultation of the hotter star by a disk of variable thickness. Our model fits the overall light curve during 18.5 years well, including epochs of reversal of main and secondary eclipse depths. The disk radius cyclically change around the tidal radius, decoupled from changes in the mass transfer rate or system brightness, suggesting that viscous delay might explain the non-immediate response. Although the disk is large and fills a large fraction of the hot star Roche lobe, Lindblad resonance are far beyond the disk, excluding viscous dissipation as a major source of photometric variability.
V393 Scorpii is a member of the subclass of Algols dubbed Double Periodic Variables (DPVs). These are semidetached binaries with B-type primaries showing a long-photometric cycle lasting in average 33 times the orbital period. We describe the behavio r of unreported metallic emission lines in the cool stellar component of this system. The emissions can be single or double for a same line and sometimes show velocity shifts regarding the velocity of the center of mass of the star. In addition, these lines are stronger during the high state. This behavior suggests the presence of active regions in the surface of the rapidly rotating A7 donor covering a fraction of the visible hemisphere, which have larger emissivity during the high state. Our finding supports the recently proposed dynamo model for the long cycle of DPVs proposed by Schleicher & Mennickent. The model predicts an increase of the dynamo number of the donor during epochs of mass transfer in this system, and a theoretical long/orbital period ratio very close to the observed one at the present system age.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا