ﻻ يوجد ملخص باللغة العربية
We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud. The system consists of two late G-type giant stars on an eccentric orbit and orbital period of ~200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson Devinney code. We derived orbital and physical parameters of the binary with a high precision of < 1 %. The masses and surface metallicities of the components are virtually the same and equal to 2.23 +/- 0.02 M_sun and [Fe/H] = -0.63 +/- 0.10 dex. However their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M) = 18.452 +/- 0.023 (statistical) +/- 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter we applied a geometrical correction for its position in the LMC disc using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is d_LMC = 50.30 +/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzynski et al.(2013).
In this first paper of the series we describe our project to calibrate the distance determination method based on early-type binary systems. The final objective is to measure accurate, geometrical distances to galaxies beyond the Magellanic Clouds wi
Aim: Our aim is to obtain high-accuracy measurements of the physical and orbital parameters of two evolved eclipsing binary systems, and to use these measurements to study their evolutionary status. We also aim to derive distances to the systems by u
We performed a new and accurate fit of light and radial velocity curves of the Large Magellanic Cloud (LMC) Cepheid --OGLE-LMC-CEP-0227-- belonging to a detached double-lined eclipsing binary system. We computed several sets of nonlinear, convective
We present a catalogue of 1768 eclipsing binary stars (EBs) detected in the Large Magellanic Cloud (LMC) by the second generation of the EROS survey (hereinafter EROS-2); 493 of them are new discoveries located in outer regions (out of the central ba
We present a determination of precise fundamental physical parameters of twenty detached, double- lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems, the remaining nine