ﻻ يوجد ملخص باللغة العربية
Double Periodic Variables (DPVs) are hot Algols showing a long photometric cycle of uncertain origin. We report the discovery of changes in the orbital light curve of OGLE-LMC-DPV-097 which depend on the phase of its long photometric cycle. During the ascending branch of the long-cycle the brightness at the first quadrature is larger than during the second quadrature, during the maximum of the long-cycle the brightness is basically the same at both quadratures, during the descending branch the brightness at the second quadrature is larger than during the first quadrature and during the minimum of the long-cycle the secondary minimum disappears. We model the light curve at different phases of the long-cycle and find that the data are consistent with changes in the properties of the accretion disk and two disk spots. The disks size and temperature change with the long-cycle period. We find a smaller and hotter disk at minimum and larger and cooler disk at maximum. The spot temperatures, locations and angular sizes also show variability during the long-cycle.
OGLE-LMC-DPV-065 is an interacting binary whose double-hump long photometric cycle remains hitherto unexplained. We analyze photometric time series available in archive datasets spanning 124 years and present the analysis of new high-resolution spect
V393 Scorpii is a member of the subclass of Algols dubbed Double Periodic Variables (DPVs). These are semidetached binaries with B-type primaries showing a long-photometric cycle lasting in average 33 times the orbital period. We describe the behavio
The subtype of hot algol semidetached binaries dubbed Double Periodic Variables (DPVs) are characterized by a photometric cycle longer than the orbital one, whose nature has been related to a magnetic dynamo in the donor component controlling the mas
This paper presents a detailed analysis of the light and radial velocity curves of the semi-detached eclipsing binary system OGLE-LMC-ECL-09937. The system is composed of a hot, massive and luminous primary star of a late-O spectral type, and a more
Helioseismic data for solar cycles 23 and 24 have shown unequivocally that solar dynamics changes with solar activity. Changes in solar structure have been more difficult to detect. Basu & Mandel (2004) had claimed that the then available data reveal