ﻻ يوجد ملخص باللغة العربية
In this paper we describe algorithms for computing the BWT and for building (compressed) indexes in external memory. The innovative feature of our algorithms is that they are lightweight in the sense that, for an input of size $n$, they use only ${n}$ bits of disk working space while all previous approaches use $Th{n log n}$ bits of disk working space. Moreover, our algorithms access disk data only via sequential scans, thus they take full advantage of modern disk features that make sequential disk accesses much faster than random accesses. We also present a scan-based algorithm for inverting the BWT that uses $Th{n}$ bits of working space, and a lightweight {em internal-memory} algorithm for computing the BWT which is the fastest in the literature when the available working space is $os{n}$ bits. Finally, we prove {em lower} bounds on the complexity of computing and inverting the BWT via sequential scans in terms of the classic product: internal-memory space $times$ number of passes over the disk data.
Data series similarity search is a core operation for several data series analysis applications across many different domains. However, the state-of-the-art techniques fail to deliver the time performance required for interactive exploration, or anal
In the unit-cost comparison model, a black box takes an input two items and outputs the result of the comparison. Problems like sorting and searching have been studied in this model, and it has been generalized to include the concept of priced inform
We study the problem of validating XML documents of size $N$ against general DTDs in the context of streaming algorithms. The starting point of this work is a well-known space lower bound. There are XML documents and DTDs for which $p$-pass streaming
We study dynamic planar point location in the External Memory Model or Disk Access Model (DAM). Previous work in this model achieves polylog query and polylog amortized update time. We present a data structure with $O( log_B^2 N)$ query time and $O(f
The recent introduction of learned indexes has shaken the foundations of the decades-old field of indexing data structures. Combining, or even replacing, classic design elements such as B-tree nodes with machine learning models has proven to give out