ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality of Diffractive Collisions and the Quantum Pressure Standard

55   0   0.0 ( 0 )
 نشر من قبل Kirk Madison
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work demonstrates that quantum diffractive collisions, those that result in very small momentum and energy transfer, are universal. Specifically, the cumulative energy distribution transferred to an initially stationary sensor particle by a quantum diffractive collision follows a universal function that depends only on the sensor particle mass and the thermally-averaged, total collision cross section. The characteristic energy scale corresponds to the localization length associated with the collision-induced quantum measurement, and the shape of the universal function is determined {it only} by the analytic form of the interaction potential at long range. Using cold $^{87}$Rb sensor atoms confined in a magnetic trap, we observe experimentally the universal function specific to van der Waals collisions, and realize a emph{self-defining} particle pressure sensor that can be used for any ambient gas. This provides the first primary and quantum definition of the Pascal, applicable to any species and therefore represents a key advance for vacuum and pressure metrology. The quantum pressure standard realized here was compared with a state-of-the-art orifice flow standard transferred by an ionization gauge calibrated for N$_2$. The pressure measurements agreed at the 0.5% level.



قيم البحث

اقرأ أيضاً

We present measurements and calculations of the trap loss rate for laser cooled Rb atoms confined in either a magneto-optic or a magnetic quadrupole trap when exposed to a room temperature background gas of Ar. We study the loss rate as a function of trap depth and find that copious glancing elastic collisions, which occur in the so-called quantum-diffractive regime and impart very little energy to the trapped atoms, result in significant differences in the loss rate for the MOT compared to a pure magnetic trap due solely to the difference in potential depth. This finding highlights the importance of knowing the trap depth when attempting to infer the total collision cross section from measurements of trap loss rates. Moreover, this variation of trap loss rate with trap depth can be used to extract information about the differential cross section.
We simultaneously measure the gravitationally-induced phase shift in two Raman-type matter-wave interferometers operated with laser-cooled ensembles of $^{87}$Rb and $^{39}$K atoms. Our measurement yields an Eotvos ratio of $eta_{text{Rb,K}}=(0.3pm 5 .4)times 10^{-7}$. We briefly estimate possible bias effects and present strategies for future improvements.
We report on an improved test of the Universality of Free Fall using a rubidium-potassium dual-species matter wave interferometer. We describe our apparatus and detail challenges and solutions relevant when operating a potassium interferometer, as we ll as systematic effects affecting our measurement. Our determination of the Eotvos ratio yields $eta_{,text{Rb,K}}=-1.9times10^{-7}$ with a combined standard uncertainty of $sigma_eta=3.2times10^{-7}$.
131 - K.-K. Ni , S. Ospelkaus , D. Wang 2010
Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or contact, interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions.
Magnetic control of reactive scattering is realized in an ultracold mixture of $^{23}$Na atoms and $^{23}$Na$^{6}$Li molecules via Feshbach resonances. In most molecular systems, particles form lossy collision complexes at short range with unity prob ability for chemical reaction or inelastic scattering leading to the so-called universal loss rate. In contrast, Na${+}$NaLi is shown to have ${<}4%$ loss probability at short range when spin polarization suppresses loss. By controlling the phase of the wavefunction via a Feshbach resonance, we modify the loss rate by more than a factor of hundred, from far below the universal limit to far above, demonstrated here for the fist time. The results are explained in analogy with an optical Fabry-Perot interferometer by constructive and destructive interference of reflections at short and long range. Our work demonstrates quantum control of chemistry by magnetic fields with the full dynamic range predicted by our models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا