ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of reactive collisions by quantum interference

260   0   0.0 ( 0 )
 نشر من قبل Hyungmok Son
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic control of reactive scattering is realized in an ultracold mixture of $^{23}$Na atoms and $^{23}$Na$^{6}$Li molecules via Feshbach resonances. In most molecular systems, particles form lossy collision complexes at short range with unity probability for chemical reaction or inelastic scattering leading to the so-called universal loss rate. In contrast, Na${+}$NaLi is shown to have ${<}4%$ loss probability at short range when spin polarization suppresses loss. By controlling the phase of the wavefunction via a Feshbach resonance, we modify the loss rate by more than a factor of hundred, from far below the universal limit to far above, demonstrated here for the fist time. The results are explained in analogy with an optical Fabry-Perot interferometer by constructive and destructive interference of reflections at short and long range. Our work demonstrates quantum control of chemistry by magnetic fields with the full dynamic range predicted by our models.



قيم البحث

اقرأ أيضاً

MOLSCAT is a general-purpose program for quantum-mechanical calculations on nonreactive atom-atom, atom-molecule and molecule-molecule collisions. It constructs the coupled-channel equations of atomic and molecular scattering theory, and solves them by propagating the wavefunction or log-derivative matrix outwards from short range to the asymptotic region. It then applies scattering boundary conditions to extract the scattering matrix (S matrix). Built-in coupling cases include atom + rigid linear molecule, atom + vibrating diatom, atom + rigid symmetric top, atom + asymmetric or spherical top, rigid diatom + rigid diatom, rigid diatom + asymmetric top, and diffractive scattering of an atom from a crystal surface. Interaction potentials may be specified either in program input (for simple cases) or with user-supplied routines. For the built-in coupling cases, MOLSCAT can loop over partial wave (or total angular momentum) to calculate elastic and inelastic cross integral sections and spectroscopic line-shape cross sections. Post-processors are available to calculate differential cross sections, transport, relaxation and Senftleben-Beenakker cross sections, and to fit the parameters of scattering resonances. MOLSCAT also provides an interface for plug-in routines to specify coupling cases (Hamiltonians and basis sets) that are not built in; plug-in routines are supplied to handle collisions of a pair of alkali-metal atoms with hyperfine structure in an applied magnetic field. For low-energy scattering, MOLSCAT can calculate scattering lengths and effective ranges and can locate and characterize scattering resonances as a function of an external variable such as the magnetic field.
137 - K.-K. Ni , S. Ospelkaus , D. Wang 2010
Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or contact, interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions.
We study cold heteronuclear atom ion collisions by immersing a trapped single ion into an ultracold atomic cloud. Using ultracold atoms as reaction targets, our measurement is sensitive to elastic collisions with extremely small energy transfer. The observed energy-dependent elastic atom-ion scattering rate deviates significantly from the prediction of Langevin but is in full agreement with the quantum mechanical cross section. Additionally, we characterize inelastic collisions leading to chemical reactions at the single particle level and measure the energy-dependent reaction rate constants. The reaction products are identified by in-trap mass spectrometry, revealing the branching ratio between radiative and non-radiative charge exchange processes.
We show that quantum interference-based coherent control is a highly efficient tool for tuning ultracold molecular collision dynamics, and is free from the limitations of commonly used methods that rely on external electromagnetic fields. By varying {the relative populations and} phases of an initial coherent superpositions of degenerate molecular states, we demonstrate complete coherent control over integral scattering cross sections in the ultracold $s$-wave regime of both the initial and final collision channels. The proposed control methodology is applied to ultracold O$_2$~+~O$_2$ collisions, showing extensive control over $s$-wave spin-exchange cross sections and product branching ratios over many orders of magnitude.
The control of the ultracold collisions between neutral atoms is an extensive and successful field of study. The tools developed allow for ultracold chemical reactions to be managed using magnetic fields, light fields and spin-state manipulation of t he colliding particles among other methods. The control of chemical reactions in ultracold atom-ion collisions is a young and growing field of research. Recently, the collision energy and the ion electronic state were used to control atom-ion interactions. Here, we demonstrate spin-controlled atom-ion inelastic processes. In our experiment, both spin-exchange and charge-exchange reactions are controlled in an ultracold Rb-Sr$^+$ mixture by the atomic spin state. We prepare a cloud of atoms in a single hyperfine spin-state. Spin-exchange collisions between atoms and ion subsequently polarize the ion spin. Electron transfer is only allowed for (RbSr)$^+$ colliding in the singlet manifold. Initializing the atoms in various spin states affects the overlap of the collision wavefunction with the singlet molecular manifold and therefore also the reaction rate. We experimentally show that by preparing the atoms in different spin states one can vary the charge-exchange rate in agreement with theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا