ﻻ يوجد ملخص باللغة العربية
We report on an improved test of the Universality of Free Fall using a rubidium-potassium dual-species matter wave interferometer. We describe our apparatus and detail challenges and solutions relevant when operating a potassium interferometer, as well as systematic effects affecting our measurement. Our determination of the Eotvos ratio yields $eta_{,text{Rb,K}}=-1.9times10^{-7}$ with a combined standard uncertainty of $sigma_eta=3.2times10^{-7}$.
We simultaneously measure the gravitationally-induced phase shift in two Raman-type matter-wave interferometers operated with laser-cooled ensembles of $^{87}$Rb and $^{39}$K atoms. Our measurement yields an Eotvos ratio of $eta_{text{Rb,K}}=(0.3pm 5
The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundament
We propose a very long baseline atom interferometer test of Einsteins equivalence principle (EEP) with ytterbium and rubidium extending over 10m of free fall. In view of existing parametrizations of EEP violations, this choice of test masses signific
A major challenge common to all Galilean drop tests of the Universality of Free Fall (UFF) is the required control over the initial kinematics of the two test masses upon release due to coupling to gravity gradients and rotations. In this work, we pr
Einsteins theory of gravity, general relativity, has passed stringent tests in laboratories, elsewhere in the Solar Sytem, and in pulsar binaries. Nevertheless it is known to be incompatible with quantum mechanics and must differ from the true behavi