ﻻ يوجد ملخص باللغة العربية
Impulsive gravitational waves in Minkowski space were introduced by Roger Penrose at the end of the 1960s, and have been widely studied over the decades. Here we focus on non-expanding waves which later have been generalised to impulses travelling in all constant-curvature backgrounds, that is also the (anti-)de Sitter universe. While Penroses original construction was based on his vivid geometric `scissors-and-paste approach in a flat background, until now a comparably powerful visualisation and understanding have been missing in the ${Lambda ot=0}$ case. In this work we provide such a picture: The (anti-)de Sitter hyperboloid is cut along the null wave surface, and the `halves are then re-attached with a suitable shift of their null generators across the wave surface. This special family of global null geodesics defines an appropriate comoving coordinate system, leading to the continuous form of the metric. Moreover, it provides a complete understanding of the nature of the Penrose junction conditions and their specific form. These findings shed light on recent discussions of the memory effect in impulsive waves.
We study geodesics in the complete family of nonexpanding impulsive gravitational waves propagating in spaces of constant curvature, that is Minkowski, de Sitter and anti-de Sitter universes. Employing the continuous form of the metric we prove exist
We generalize the classical junction conditions for constructing impulsive gravitational waves by the Penrose cut and paste method. Specifically, we study nonexpanding impulses which propagate in spaces of constant curvature with any value of the cos
We investigate a class of gravitational pp-waves which represent the exterior vacuum field of spinning particles moving with the speed of light. Such exact spacetimes are described by the original Brinkmann form of the pp-wave metric including the of
We study the variational principle on a Hilbert-Einstein action in an extended geometry with torsion taking into account non-trivial boundary conditions. We obtain an effective energy-momentum tensor that has its source in the torsion, which represen
In this talk I review recent progresses in the detection of scalar gravitational waves. Furthermore, in the framework of the Jordan-Brans-Dicke theory, I compute the signal to noise ratio for a resonant mass detector of spherical shape and for binary