ﻻ يوجد ملخص باللغة العربية
We investigate a class of gravitational pp-waves which represent the exterior vacuum field of spinning particles moving with the speed of light. Such exact spacetimes are described by the original Brinkmann form of the pp-wave metric including the often neglected off-diagonal terms. We put emphasis on a clear physical and geometrical interpretation of these off-diagonal metric components. We explicitly analyze several new properties of these spacetimes associated with the spinning character of the source, such as rotational dragging of frames, geodesic deviation, impulsive limits and the corresponding behavior of geodesics.
We consider the geodesic equation in impulsive pp-wave space-times in Rosen form, where the metric is of Lipschitz regularity. We prove that the geodesics (in the sense of Caratheodory) are actually continuously differentiable, thereby rigorously jus
We generalize the classical junction conditions for constructing impulsive gravitational waves by the Penrose cut and paste method. Specifically, we study nonexpanding impulses which propagate in spaces of constant curvature with any value of the cos
Impulsive gravitational waves in Minkowski space were introduced by Roger Penrose at the end of the 1960s, and have been widely studied over the decades. Here we focus on non-expanding waves which later have been generalised to impulses travelling in
Non-vacuum exact gravitational waves invariant for a non Abelian two-dimensional Lie algebra generated by two Killing fields whose commutator is of light type, are described. The polarization of these waves, already known from previous works, is rela
We study geodesics in the complete family of nonexpanding impulsive gravitational waves propagating in spaces of constant curvature, that is Minkowski, de Sitter and anti-de Sitter universes. Employing the continuous form of the metric we prove exist