ترغب بنشر مسار تعليمي؟ اضغط هنا

Progress on cubic interactions of arbitrary superspin supermultiplets via gauge invariant supercurrents

62   0   0.0 ( 0 )
 نشر من قبل Konstantinos Koutrolikos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider cubic interactions of the form $s-Y-Y$ between a massless integer superspin $s$ supermultiplet and two massless arbitrary integer or half integer superspin $Y$ supermultiplets. We focus on non-minimal interactions generated by gauge invariant supercurrent multiplets which are bilinear in the superfield strength of the superspin $Y$ supermultiplet. We find two types of consistent supercurrents. The first one corresponds to conformal integer superspin $s$ supermultiplets, exist only for even values of $s, s=2ell+2$, for arbitrary values of $Y$ and it is unique. The second one, corresponds to Poincare integer superspin $s$ supermultiplets, exist for arbitrary values of $s$ and $Y$.



قيم البحث

اقرأ أيضاً

In recent papers we demonstrated that consistent and non-trivial emph{linear} transformations of matter supermultiplets generate half-integer superspin supercurrents and the cubic interactions between matter and half-integer superspin supermultiplets . In this work we show that consistent and non-trivial emph{antilinear} transformations of matter superfields lead to the construction of integer superspin supercurrents and the cubic interactions between mater and integer superspin supermultiplets. Applying Noethers method to these transformations, we find new integer superspin supercurrents for the case of a free massless chiral superfield. Furthermore, we use them to find new integer superspin supercurrent multiplets for a massive chiral superfield and a chiral superfield with a linear superpotential. Also various selection rules for such interactions are found.
We give an explicit superspace construction of higher spin conserved supercurrents built out of $4D,mathcal{N}=1$ massless supermultiplets of arbitrary spin. These supercurrents are gauge invariant and generate a large class of cubic interactions bet ween a massless supermultiplet with superspin $Y_1=s_1+1/2$ and two massless supermultiplets of arbitrary superspin $Y_2$. These interactions are possible only for $s_1geq 2Y_2$. At the equality, the supercurrent acquires its simplest form and defines the supersymmetric, higher spin extension of the linearized Bel-Robinson tensor.
We investigate cubic interactions between a chiral superfield and higher spin superfield corresponding to irreducible representations of the $4D,, mathcal{N}=1$ super-Poincar{e} algebra. We do this by demanding an invariance under the most general tr ansformation, linear in the chiral superfield. Following Noethers method we construct an infinite tower of higher spin supercurrent multiplets which are quadratic in the chiral superfield and include higher derivatives. The results are that a single, massless, chiral superfield can couple only to the half-integer spin supermultiplets $(s+1,s+1/2)$ and for every value of spin there is an appropriate improvement term that reduces the supercurrent multiplet to a minimal multiplet which matches that of superconformal higher spins. On the other hand a single, massive, chiral superfield can couple only to higher spin supermultiplets of type $(2l+2hspace{0.3ex},hspace{0.1ex}2l+3/2)$ and there is no minimal multiplet. Furthermore, for the massless case we discuss the component level higher spin currents and provide explicit expressions for the integer and half-integer spin conserved currents together with a R-symmetry current.
On the basis of recent results extending non-trivially the Poincare symmetry, we investigate the properties of bosonic multiplets including $2-$form gauge fields. Invariant free Lagrangians are explicitly built which involve possibly $3-$ and $4-$for m fields. We also study in detail the interplay between this symmetry and a U(1) gauge symmetry, and in particular the implications of the automatic gauge-fixing of the latter associated to a residual gauge invariance, as well as the absence of self-interaction terms.
Free massless higher-superspin superfields on the N=1, D=4 anti-de Sitter superspace are introduced. The linearized gauge transformations are postulated. Two families of dually equivalent gauge-invariant action functionals are constructed for massles s half-integer-superspin s+1/2 (s >= 2) and integer-superspin s (s >= 1) superfields. For s=1, one of the formulations for half-integer superspin multiplets reduces to linearized minimal N=1 supergravity with a cosmological term, while the other is the lifting to the anti-de Sitter superspace of linearized non-minimal n=-1 supergravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا