ترغب بنشر مسار تعليمي؟ اضغط هنا

Cubic supersymmetry and abelian gauge invariance

69   0   0.0 ( 0 )
 نشر من قبل Adrian Tanasa
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On the basis of recent results extending non-trivially the Poincare symmetry, we investigate the properties of bosonic multiplets including $2-$form gauge fields. Invariant free Lagrangians are explicitly built which involve possibly $3-$ and $4-$form fields. We also study in detail the interplay between this symmetry and a U(1) gauge symmetry, and in particular the implications of the automatic gauge-fixing of the latter associated to a residual gauge invariance, as well as the absence of self-interaction terms.



قيم البحث

اقرأ أيضاً

Basis tensor gauge theory (BTGT) is a vierbein analog reformulation of ordinary gauge theories in which the vierbein field describes the Wilson line. After a brief review of the BTGT, we clarify the Lorentz group representation properties associated with the variables used for its quantization. In particular, we show that starting from an SO(1,3) representation satisfying the Lorentz-invariant U(1,3) matrix constraints, BTGT introduces a Lorentz frame choice to pick the Abelian group manifold generated by the Cartan subalgebra of u(1,3) for the convenience of quantization even though the theory is frame independent. This freedom to choose a frame can be viewed as an additional symmetry of BTGT that was not emphasized before. We then show how an $S_4$ permutation symmetry and a parity symmetry of frame fields natural in BTGT can be used to construct renormalizable gauge theories that introduce frame dependent fields but remain frame independent perturbatively without any explicit reference to the usual gauge field.
We consider cubic interactions of the form $s-Y-Y$ between a massless integer superspin $s$ supermultiplet and two massless arbitrary integer or half integer superspin $Y$ supermultiplets. We focus on non-minimal interactions generated by gauge invar iant supercurrent multiplets which are bilinear in the superfield strength of the superspin $Y$ supermultiplet. We find two types of consistent supercurrents. The first one corresponds to conformal integer superspin $s$ supermultiplets, exist only for even values of $s, s=2ell+2$, for arbitrary values of $Y$ and it is unique. The second one, corresponds to Poincare integer superspin $s$ supermultiplets, exist for arbitrary values of $s$ and $Y$.
We study two-dimensional non-abelian BF theory in Lorenz gauge and prove that it is a topological conformal field theory. This opens the possibility to compute topological string amplitudes (Gromov-Witten invariants). We found that the theory is exac tly solvable in the sense that all correlators are given by finite-dimensional convergent integrals. Surprisingly, this theory turns out to be logarithmic in the sense that there are correlators given by polylogarithms and powers of logarithms. Furthermore, we found fields with logarithmic conformal dimension (elements of a Jordan cell for $L_0$). We also found certain vertex operators with anomalous dimensions that depend on the non-abelian coupling constant. The shift of dimension of composite fields may be understood as arising from the dependence of subtracted singular terms on local coordinates. This generalizes the well-known explanation of anomalous dimensions of vertex operators in the free scalar field theory.
The study of the properties of quantum particles in a periodic potential subject to a magnetic field is an active area of research both in physics and mathematics; it has been and it is still deeply investigated. In this review we discuss how to impl ement and describe tunable Abelian magnetic fields in a system of ultracold atoms in optical lattices. After discussing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold set-ups, we study cubic lattice tight-binding models with commensurate flux. We finally examine applications of gauge potentials in one-dimensional rings.
We study the two-dimensional topological abelian BF theory in the Lorenz gauge and, surprisingly, we find that the gauged-fixed theory is a free type B twisted N=(2,2) superconformal theory with odd linear target space, with the ghost field c being t he pullback of the linear holomorphic coordinate on the target. The BRST operator of the gauge-fixed theory equals the total Q of type B twisted theory. This unexpected identification of two different theories opens a way for nontrivial deformations of both of these theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا