ﻻ يوجد ملخص باللغة العربية
We give an explicit superspace construction of higher spin conserved supercurrents built out of $4D,mathcal{N}=1$ massless supermultiplets of arbitrary spin. These supercurrents are gauge invariant and generate a large class of cubic interactions between a massless supermultiplet with superspin $Y_1=s_1+1/2$ and two massless supermultiplets of arbitrary superspin $Y_2$. These interactions are possible only for $s_1geq 2Y_2$. At the equality, the supercurrent acquires its simplest form and defines the supersymmetric, higher spin extension of the linearized Bel-Robinson tensor.
We investigate cubic interactions between a chiral superfield and higher spin superfield corresponding to irreducible representations of the $4D,, mathcal{N}=1$ super-Poincar{e} algebra. We do this by demanding an invariance under the most general tr
We continue the program of constructing cubic interactions between matter and higher spin supermultiplets. In this work we consider a complex linear superfield and we find that it can have cubic interactions only with supermultiplets with propagating
We consider a massless higher spin field theory within the BRST approach and construct a general off-shell cubic vertex corresponding to irreducible higher spin fields of helicities $s_1, s_2, s_3$. Unlike the previous works on cubic vertices, which
We consider cubic interactions of the form $s-Y-Y$ between a massless integer superspin $s$ supermultiplet and two massless arbitrary integer or half integer superspin $Y$ supermultiplets. We focus on non-minimal interactions generated by gauge invar
We consider a four dimensional generalized Wess-Zumino model formulated in terms of an arbitrary K{a}hler potential $mathcal{K}(Phi,bar{Phi})$ and an arbitrary chiral superpotential $mathcal{W}(Phi)$. A general analysis is given to describe the possi