ﻻ يوجد ملخص باللغة العربية
The field of quantum chaos originated in the study of spectral statistics for interacting many-body systems, but this heritage was almost forgotten when single-particle systems moved into the focus. In recent years new interest emerged in many-body aspects of quantum chaos. We study a chain of interacting, kicked spins and carry out a semiclassical analysis that is capable of identifying all kinds of genuin many-body periodic orbits. We show that the collective many-body periodic orbits can fully dominate the spectra in certain cases.
Previously, we demonstrated that the dynamics of kicked spin chains possess a remarkable duality property. The trace of the unitary evolution operator for $N$ spins at time $T$ is related to one of a non-unitary evolution operator for $T$ spins at ti
Electric drive using dc shunt motor or permanent magnet dc (PMDC) motor as prime mover exhibits bifurcation and chaos. The characteristics of dc shunt and PMDC motors are linear in nature. These motors are controlled by pulse width modulation (PWM) t
While plenty of results have been obtained for single-particle quantum systems with chaotic dynamics through a semiclassical theory, much less is known about quantum chaos in the many-body setting. We contribute to recent efforts to make a semiclassi
The finest state space resolution that can be achieved in a physical dynamical system is limited by the presence of noise. In the weak-noise approximation the neighborhoods of deterministic periodic orbits can be computed as distributions stationary
We demonstrate that the dynamics of kicked spin chains possess a remarkable duality property. The trace of the unitary evolution operator for $N$ spins at time $T$ is related to one of a non-unitary evolution operator for $T$ spins at time $N$. We in